from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import transformers from transformers import ( AutoConfig, AutoModelForCausalLM, Qwen2Config, Qwen2ForCausalLM, Qwen2Model, ) from transformers.generation.utils import GenerateOutput from transformers.modeling_outputs import CausalLMOutputWithPast from ..egogpt_arch import EgoGPTMetaForCausalLM, EgoGPTMetaModel class EgoGPTConfigQwen(Qwen2Config): model_type = "egogpt_qwen" class EgoGPTQwenModel(EgoGPTMetaModel, Qwen2Model): config_class = EgoGPTConfigQwen def __init__(self, config: Qwen2Config): super(EgoGPTQwenModel, self).__init__(config) class EgoGPTQwenForCausalLM(Qwen2ForCausalLM, EgoGPTMetaForCausalLM): config_class = EgoGPTConfigQwen def __init__(self, config): super(Qwen2ForCausalLM, self).__init__(config) config.rope_scaling = None self.model = EgoGPTQwenModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, speech: Optional[torch.FloatTensor] = None, speech_lengths: Optional[torch.LongTensor] = None, images: Optional[torch.FloatTensor] = None, image_sizes: Optional[List[List[int]]] = None, modalities: Optional[List[str]] = ["image"], return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels, ) = self.prepare_inputs_labels_for_speech_and_text( input_ids, position_ids, attention_mask, past_key_values, labels, speech, speech_lengths, images, image_sizes, modalities, ) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, speech: Optional[torch.Tensor] = None, speech_lengths: Optional[torch.Tensor] = None, images: Optional[torch.FloatTensor] = None, image_sizes: Optional[List[List[int]]] = None, modalities: Optional[List[str]] = ["image"], **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if speech is not None: ( inputs, position_ids, attention_mask, _, inputs_embeds, _, ) = self.prepare_inputs_labels_for_speech_and_text( inputs, position_ids, attention_mask, None, None, speech, speech_lengths, images, image_sizes, modalities, ) else: inputs_embeds = self.get_model().embed_tokens(inputs) return super().generate( position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs ): speech = kwargs.pop("speech", None) speech_lengths = kwargs.pop("speech_lengths", None) inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs, ) if speech is not None: inputs["speech"] = speech inputs["speech_lengths"] = speech_lengths return inputs AutoConfig.register("egogpt_qwen", EgoGPTConfigQwen) AutoModelForCausalLM.register(EgoGPTConfigQwen, EgoGPTQwenForCausalLM)