# Import the libraries import os import uuid import joblib import json import gradio as gr import pandas as pd from huggingface_hub import CommitScheduler from pathlib import Path # Run the training script placed in the same directory as app.py # The training script will train and persist a linear regression # model with the filename 'model.joblib' import train train # Load the freshly trained model from disk saved_model = joblib.load('model.joblib') # Prepare the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent scheduler = CommitScheduler( repo_id="insurance-charge-mlops-logs", # provide a name "insurance-charge-mlops-logs" for the repo_id repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 ) # Define the predict function which will take features, convert to dataframe and make predictions using the saved model # the functions runs when 'Submit' is clicked or when a API request is made def predict_charge(age, bmi, children, sex, smoker, region ): sample = { 'age': age, 'bmi': bmi, 'children': children, 'sex': sex, 'smoker': smoker, 'region': region, } data_point = pd.DataFrame([sample]) prediction = saved_model.predict(data_point).tolist() # if prediction is less than zero assign zero if prediction[0] < 0: prediction[0] = 0 # While the prediction is made, log both the inputs and outputs to a log file # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel # access with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'age': age, 'bmi': bmi, 'children': children, 'sex': sex, 'smoker': smoker, 'region': region, 'prediction': prediction[0] } )) f.write("\n") return (prediction[0]) # Set up UI components for input and output # age = gr.Number(label="age") age = gr.Slider(1, 100, step =1, minimum =1, maximum = 100, label="age", info='Age between 1 and 100') bmi = gr.Number(label="bmi") # children = gr.Number(label='children') children = gr.Slider(label='children', step =1, minimum =0, maximum = 10, info = 'Enter number of children') sex = gr.Dropdown(label='sex', choices=['male', 'female']) smoker = gr.Dropdown(label='smoker', choices=['yes', 'no']) region = gr.Dropdown(label='region', choices =['southwest', 'southeast', 'northwest', 'northeast']) charge = gr.Number(label="Prediction") # Create the gradio interface, make title "HealthyLife Insurance Charge Prediction" demo = gr.Interface( fn = predict_charge, inputs = [age, bmi, children, sex, smoker, region,], outputs = charge, title = 'HealthyLife Insurance Charge Prediction', description = 'Calculate charges') # Launch with a load balancer demo.queue() demo.launch(share=False)