# -*- coding: utf-8 -*- """Demo.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Icb8zeoaudyTDOKM1QySNay1cXzltRAp """ import gradio as gr from PIL import Image import re import torch import torch.nn as nn from warnings import simplefilter simplefilter('ignore') device = 'cuda' if torch.cuda.is_available() else 'cpu' # Seting up the model from transformers import DonutProcessor, VisionEncoderDecoderModel print('Loading the base model ....') base_model = VisionEncoderDecoderModel.from_pretrained('Edgar404/donut-shivi-recognition') base_processor = DonutProcessor.from_pretrained('Edgar404/donut-shivi-recognition') print('Loading complete') print('Loading the latence optimized model ....') optimized_model = VisionEncoderDecoderModel.from_pretrained('Edgar404/donut-shivi-cheques_KD_320') optimized_processor = DonutProcessor.from_pretrained('Edgar404/donut-shivi-cheques_KD_320') print('Loading complete') print('Loading the performance optimized model ....') performance_model = VisionEncoderDecoderModel.from_pretrained('Edgar404/donut-shivi-cheques_1920') performance_processor = DonutProcessor.from_pretrained('Edgar404/donut-shivi-cheques_1920') print('Loading complete') models = {'baseline': base_model , 'performance': performance_model , 'latence': optimized_model} processors = {'baseline': base_processor , 'performance': performance_processor , 'latence': optimized_processor} # setting def process_image(image , mode = 'baseline' ): """ Function that takes an image and perform an OCR using the model DonUT via the task document parsing parameters __________ image : a machine readable image of class PIL or numpy""" model = models[mode] processor = processors[mode] d_type = torch.float32 model.to(device) model.eval() task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids pixel_values = processor(image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device , dtype = d_type), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() output = processor.token2json(sequence) return output def image_classifier(image , mode): return process_image(image , mode) examples_list = [['./test_images/test_0.jpg' ,"baseline"] , ['./test_images/test_1.jpg','baseline'], ['./test_images/test_2.jpg' ,"baseline"], ['./test_images/test_3.jpg','baseline'], ['./test_images/test_4.jpg','baseline'], ['./test_images/test_5.jpg' ,"baseline"], ['./test_images/test_6.jpg' ,"baseline"], ['./test_images/test_7.jpg','baseline'], ['./test_images/test_8.jpg','baseline'], ['./test_images/test_9.jpg','baseline'], ] demo = gr.Interface(fn=image_classifier, inputs=["image", gr.Radio(["baseline" , "performance" ,"latence"], label="mode")], outputs="text", examples = examples_list ) demo.launch(share = True , debug = True)