import librosa import numpy as np import soundfile as sf import math import random import math import platform import traceback from . import pyrb #cur OPERATING_SYSTEM = platform.system() SYSTEM_ARCH = platform.platform() SYSTEM_PROC = platform.processor() ARM = 'arm' if OPERATING_SYSTEM == 'Windows': from pyrubberband import pyrb else: from . import pyrb if OPERATING_SYSTEM == 'Darwin': wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest" else: wav_resolution = "sinc_fastest" MAX_SPEC = 'Max Spec' MIN_SPEC = 'Min Spec' AVERAGE = 'Average' def crop_center(h1, h2): h1_shape = h1.size() h2_shape = h2.size() if h1_shape[3] == h2_shape[3]: return h1 elif h1_shape[3] < h2_shape[3]: raise ValueError('h1_shape[3] must be greater than h2_shape[3]') s_time = (h1_shape[3] - h2_shape[3]) // 2 e_time = s_time + h2_shape[3] h1 = h1[:, :, :, s_time:e_time] return h1 def preprocess(X_spec): X_mag = np.abs(X_spec) X_phase = np.angle(X_spec) return X_mag, X_phase def make_padding(width, cropsize, offset): left = offset roi_size = cropsize - offset * 2 if roi_size == 0: roi_size = cropsize right = roi_size - (width % roi_size) + left return left, right, roi_size def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False): if reverse: wave_left = np.flip(np.asfortranarray(wave[0])) wave_right = np.flip(np.asfortranarray(wave[1])) elif mid_side: wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2) wave_right = np.asfortranarray(np.subtract(wave[0], wave[1])) elif mid_side_b2: wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5)) wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5)) else: wave_left = np.asfortranarray(wave[0]) wave_right = np.asfortranarray(wave[1]) spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length) spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length) spec = np.asfortranarray([spec_left, spec_right]) return spec def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False): import threading if reverse: wave_left = np.flip(np.asfortranarray(wave[0])) wave_right = np.flip(np.asfortranarray(wave[1])) elif mid_side: wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2) wave_right = np.asfortranarray(np.subtract(wave[0], wave[1])) elif mid_side_b2: wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5)) wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5)) else: wave_left = np.asfortranarray(wave[0]) wave_right = np.asfortranarray(wave[1]) def run_thread(**kwargs): global spec_left spec_left = librosa.stft(**kwargs) thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length}) thread.start() spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length) thread.join() spec = np.asfortranarray([spec_left, spec_right]) return spec def normalize(wave, is_normalize=False): """Save output music files""" maxv = np.abs(wave).max() if maxv > 1.0: print(f"\nNormalization Set {is_normalize}: Input above threshold for clipping. Max:{maxv}") if is_normalize: print(f"The result was normalized.") wave /= maxv else: print(f"The result was not normalized.") else: print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}") return wave def normalize_two_stem(wave, mix, is_normalize=False): """Save output music files""" maxv = np.abs(wave).max() max_mix = np.abs(mix).max() if maxv > 1.0: print(f"\nNormalization Set {is_normalize}: Primary source above threshold for clipping. Max:{maxv}") print(f"\nNormalization Set {is_normalize}: Mixture above threshold for clipping. Max:{max_mix}") if is_normalize: print(f"The result was normalized.") wave /= maxv mix /= maxv else: print(f"The result was not normalized.") else: print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}") print(f"\nNormalization Set {is_normalize}: Primary source - Max:{np.abs(wave).max()}") print(f"\nNormalization Set {is_normalize}: Mixture - Max:{np.abs(mix).max()}") return wave, mix def combine_spectrograms(specs, mp): l = min([specs[i].shape[2] for i in specs]) spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64) offset = 0 bands_n = len(mp.param['band']) for d in range(1, bands_n + 1): h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start'] spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l] offset += h if offset > mp.param['bins']: raise ValueError('Too much bins') # lowpass fiter if mp.param['pre_filter_start'] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']: if bands_n == 1: spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop']) else: gp = 1 for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']): g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0) gp = g spec_c[:, b, :] *= g return np.asfortranarray(spec_c) def spectrogram_to_image(spec, mode='magnitude'): if mode == 'magnitude': if np.iscomplexobj(spec): y = np.abs(spec) else: y = spec y = np.log10(y ** 2 + 1e-8) elif mode == 'phase': if np.iscomplexobj(spec): y = np.angle(spec) else: y = spec y -= y.min() y *= 255 / y.max() img = np.uint8(y) if y.ndim == 3: img = img.transpose(1, 2, 0) img = np.concatenate([ np.max(img, axis=2, keepdims=True), img ], axis=2) return img def reduce_vocal_aggressively(X, y, softmask): v = X - y y_mag_tmp = np.abs(y) v_mag_tmp = np.abs(v) v_mask = v_mag_tmp > y_mag_tmp y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf) return y_mag * np.exp(1.j * np.angle(y)) def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32): mask = y_mask try: if min_range < fade_size * 2: raise ValueError('min_range must be >= fade_size * 2') idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0] start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0]) end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1]) artifact_idx = np.where(end_idx - start_idx > min_range)[0] weight = np.zeros_like(y_mask) if len(artifact_idx) > 0: start_idx = start_idx[artifact_idx] end_idx = end_idx[artifact_idx] old_e = None for s, e in zip(start_idx, end_idx): if old_e is not None and s - old_e < fade_size: s = old_e - fade_size * 2 if s != 0: weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size) else: s -= fade_size if e != y_mask.shape[2]: weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size) else: e += fade_size weight[:, :, s + fade_size:e - fade_size] = 1 old_e = e v_mask = 1 - y_mask y_mask += weight * v_mask mask = y_mask except Exception as e: error_name = f'{type(e).__name__}' traceback_text = ''.join(traceback.format_tb(e.__traceback__)) message = f'{error_name}: "{e}"\n{traceback_text}"' print('Post Process Failed: ', message) return mask def align_wave_head_and_tail(a, b): l = min([a[0].size, b[0].size]) return a[:l,:l], b[:l,:l] def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse, clamp=False): spec_left = np.asfortranarray(spec[0]) spec_right = np.asfortranarray(spec[1]) wave_left = librosa.istft(spec_left, hop_length=hop_length) wave_right = librosa.istft(spec_right, hop_length=hop_length) if reverse: return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)]) elif mid_side: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]) elif mid_side_b2: return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)]) else: return np.asfortranarray([wave_left, wave_right]) def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2): import threading spec_left = np.asfortranarray(spec[0]) spec_right = np.asfortranarray(spec[1]) def run_thread(**kwargs): global wave_left wave_left = librosa.istft(**kwargs) thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length}) thread.start() wave_right = librosa.istft(spec_right, hop_length=hop_length) thread.join() if reverse: return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)]) elif mid_side: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]) elif mid_side_b2: return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)]) else: return np.asfortranarray([wave_left, wave_right]) def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None): bands_n = len(mp.param['band']) offset = 0 for d in range(1, bands_n + 1): bp = mp.param['band'][d] spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex) h = bp['crop_stop'] - bp['crop_start'] spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :] offset += h if d == bands_n: # higher if extra_bins_h: # if --high_end_process bypass max_bin = bp['n_fft'] // 2 spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :] if bp['hpf_start'] > 0: spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1) if bands_n == 1: wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']) else: wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])) else: sr = mp.param['band'][d+1]['sr'] if d == 1: # lower spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop']) wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type=wav_resolution) else: # mid spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1) spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop']) wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])) wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution) return wave def fft_lp_filter(spec, bin_start, bin_stop): g = 1.0 for b in range(bin_start, bin_stop): g -= 1 / (bin_stop - bin_start) spec[:, b, :] = g * spec[:, b, :] spec[:, bin_stop:, :] *= 0 return spec def fft_hp_filter(spec, bin_start, bin_stop): g = 1.0 for b in range(bin_start, bin_stop, -1): g -= 1 / (bin_start - bin_stop) spec[:, b, :] = g * spec[:, b, :] spec[:, 0:bin_stop+1, :] *= 0 return spec def mirroring(a, spec_m, input_high_end, mp): if 'mirroring' == a: mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1) mirror = mirror * np.exp(1.j * np.angle(input_high_end)) return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror) if 'mirroring2' == a: mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1) mi = np.multiply(mirror, input_high_end * 1.7) return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi) def adjust_aggr(mask, is_non_accom_stem, aggressiveness): aggr = aggressiveness['value'] if aggr != 0: if is_non_accom_stem: aggr = 1 - aggr aggr = [aggr, aggr] if aggressiveness['aggr_correction'] is not None: aggr[0] += aggressiveness['aggr_correction']['left'] aggr[1] += aggressiveness['aggr_correction']['right'] for ch in range(2): mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3) mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch]) # if is_non_accom_stem: # mask = (1.0 - mask) return mask def stft(wave, nfft, hl): wave_left = np.asfortranarray(wave[0]) wave_right = np.asfortranarray(wave[1]) spec_left = librosa.stft(wave_left, nfft, hop_length=hl) spec_right = librosa.stft(wave_right, nfft, hop_length=hl) spec = np.asfortranarray([spec_left, spec_right]) return spec def istft(spec, hl): spec_left = np.asfortranarray(spec[0]) spec_right = np.asfortranarray(spec[1]) wave_left = librosa.istft(spec_left, hop_length=hl) wave_right = librosa.istft(spec_right, hop_length=hl) wave = np.asfortranarray([wave_left, wave_right]) return wave def spec_effects(wave, algorithm='Default', value=None): spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)] if algorithm == 'Min_Mag': v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0]) wave = istft(v_spec_m,1024) elif algorithm == 'Max_Mag': v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0]) wave = istft(v_spec_m,1024) elif algorithm == 'Default': wave = (wave[1] * value) + (wave[0] * (1-value)) elif algorithm == 'Invert_p': X_mag = np.abs(spec[0]) y_mag = np.abs(spec[1]) max_mag = np.where(X_mag >= y_mag, X_mag, y_mag) v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0])) wave = istft(v_spec,1024) return wave def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024): wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length) if wave.ndim == 1: wave = np.asfortranarray([wave,wave]) return wave def wave_to_spectrogram_no_mp(wave): spec = librosa.stft(wave, n_fft=2048, hop_length=1024) if spec.ndim == 1: spec = np.asfortranarray([spec,spec]) return spec def invert_audio(specs, invert_p=True): ln = min([specs[0].shape[2], specs[1].shape[2]]) specs[0] = specs[0][:,:,:ln] specs[1] = specs[1][:,:,:ln] if invert_p: X_mag = np.abs(specs[0]) y_mag = np.abs(specs[1]) max_mag = np.where(X_mag >= y_mag, X_mag, y_mag) v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0])) else: specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2) v_spec = specs[0] - specs[1] return v_spec def invert_stem(mixture, stem): mixture = wave_to_spectrogram_no_mp(mixture) stem = wave_to_spectrogram_no_mp(stem) output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem])) return -output.T def ensembling(a, specs): for i in range(1, len(specs)): if i == 1: spec = specs[0] ln = min([spec.shape[2], specs[i].shape[2]]) spec = spec[:,:,:ln] specs[i] = specs[i][:,:,:ln] if MIN_SPEC == a: spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec) if MAX_SPEC == a: spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec) if AVERAGE == a: spec = np.where(np.abs(specs[i]) == np.abs(spec), specs[i], spec) return spec def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path): wavs_ = [] if algorithm == AVERAGE: output = average_audio(audio_input) samplerate = 44100 else: specs = [] for i in range(len(audio_input)): wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100) wavs_.append(wave) spec = wave_to_spectrogram_no_mp(wave) specs.append(spec) wave_shapes = [w.shape[1] for w in wavs_] target_shape = wavs_[wave_shapes.index(max(wave_shapes))] output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs)) output = to_shape(output, target_shape.shape) sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set) def to_shape(x, target_shape): padding_list = [] for x_dim, target_dim in zip(x.shape, target_shape): pad_value = (target_dim - x_dim) pad_tuple = ((0, pad_value)) padding_list.append(pad_tuple) return np.pad(x, tuple(padding_list), mode='constant') def to_shape_minimize(x: np.ndarray, target_shape): padding_list = [] for x_dim, target_dim in zip(x.shape, target_shape): pad_value = (target_dim - x_dim) pad_tuple = ((0, pad_value)) padding_list.append(pad_tuple) return np.pad(x, tuple(padding_list), mode='constant') def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False): wav, sr = librosa.load(audio_file, sr=44100, mono=False) if wav.ndim == 1: wav = np.asfortranarray([wav,wav]) if is_pitch: wav_1 = pyrb.pitch_shift(wav[0], sr, rate, rbargs=None) wav_2 = pyrb.pitch_shift(wav[1], sr, rate, rbargs=None) else: wav_1 = pyrb.time_stretch(wav[0], sr, rate, rbargs=None) wav_2 = pyrb.time_stretch(wav[1], sr, rate, rbargs=None) if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape) if wav_1.shape < wav_2.shape: wav_1 = to_shape(wav_1, wav_2.shape) wav_mix = np.asfortranarray([wav_1, wav_2]) sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set) save_format(export_path) def average_audio(audio): waves = [] wave_shapes = [] final_waves = [] for i in range(len(audio)): wave = librosa.load(audio[i], sr=44100, mono=False) waves.append(wave[0]) wave_shapes.append(wave[0].shape[1]) wave_shapes_index = wave_shapes.index(max(wave_shapes)) target_shape = waves[wave_shapes_index] waves.pop(wave_shapes_index) final_waves.append(target_shape) for n_array in waves: wav_target = to_shape(n_array, target_shape.shape) final_waves.append(wav_target) waves = sum(final_waves) waves = waves/len(audio) return waves def average_dual_sources(wav_1, wav_2, value): if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape) if wav_1.shape < wav_2.shape: wav_1 = to_shape(wav_1, wav_2.shape) wave = (wav_1 * value) + (wav_2 * (1-value)) return wave def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray): if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape) if wav_1.shape < wav_2.shape: ln = min([wav_1.shape[1], wav_2.shape[1]]) wav_2 = wav_2[:,:ln] ln = min([wav_1.shape[1], wav_2.shape[1]]) wav_1 = wav_1[:,:ln] wav_2 = wav_2[:,:ln] return wav_2 def align_audio(file1, file2, file2_aligned, file_subtracted, wav_type_set, is_normalization, command_Text, progress_bar_main_var, save_format): def get_diff(a, b): corr = np.correlate(a, b, "full") diff = corr.argmax() - (b.shape[0] - 1) return diff progress_bar_main_var.set(10) # read tracks wav1, sr1 = librosa.load(file1, sr=44100, mono=False) wav2, sr2 = librosa.load(file2, sr=44100, mono=False) wav1 = wav1.transpose() wav2 = wav2.transpose() command_Text(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n") wav2_org = wav2.copy() progress_bar_main_var.set(20) command_Text("Processing files... \n") # pick random position and get diff counts = {} # counting up for each diff value progress = 20 check_range = 64 base = (64 / check_range) for i in range(check_range): index = int(random.uniform(44100 * 2, min(wav1.shape[0], wav2.shape[0]) - 44100 * 2)) shift = int(random.uniform(-22050,+22050)) samp1 = wav1[index :index +44100, 0] # currently use left channel samp2 = wav2[index+shift:index+shift+44100, 0] progress += 1 * base progress_bar_main_var.set(progress) diff = get_diff(samp1, samp2) diff -= shift if abs(diff) < 22050: if not diff in counts: counts[diff] = 0 counts[diff] += 1 # use max counted diff value max_count = 0 est_diff = 0 for diff in counts.keys(): if counts[diff] > max_count: max_count = counts[diff] est_diff = diff command_Text(f"Estimated difference is {est_diff} (count: {max_count})\n") progress_bar_main_var.set(90) audio_files = [] def save_aligned_audio(wav2_aligned): command_Text(f"Aligned File 2 with File 1.\n") command_Text(f"Saving files... ") sf.write(file2_aligned, normalize(wav2_aligned, is_normalization), sr2, subtype=wav_type_set) save_format(file2_aligned) min_len = min(wav1.shape[0], wav2_aligned.shape[0]) wav_sub = wav1[:min_len] - wav2_aligned[:min_len] audio_files.append(file2_aligned) return min_len, wav_sub # make aligned track 2 if est_diff > 0: wav2_aligned = np.append(np.zeros((est_diff, 2)), wav2_org, axis=0) min_len, wav_sub = save_aligned_audio(wav2_aligned) elif est_diff < 0: wav2_aligned = wav2_org[-est_diff:] min_len, wav_sub = save_aligned_audio(wav2_aligned) else: command_Text(f"Audio files already aligned.\n") command_Text(f"Saving inverted track... ") min_len = min(wav1.shape[0], wav2.shape[0]) wav_sub = wav1[:min_len] - wav2[:min_len] wav_sub = np.clip(wav_sub, -1, +1) sf.write(file_subtracted, normalize(wav_sub, is_normalization), sr1, subtype=wav_type_set) save_format(file_subtracted) progress_bar_main_var.set(95)