Spaces:
Running
Running
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from lib_v5 import spec_utils | |
class Conv2DBNActiv(nn.Module): | |
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU): | |
super(Conv2DBNActiv, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d( | |
nin, nout, | |
kernel_size=ksize, | |
stride=stride, | |
padding=pad, | |
dilation=dilation, | |
bias=False), | |
nn.BatchNorm2d(nout), | |
activ() | |
) | |
def __call__(self, x): | |
return self.conv(x) | |
class Encoder(nn.Module): | |
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU): | |
super(Encoder, self).__init__() | |
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ) | |
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ) | |
def __call__(self, x): | |
h = self.conv1(x) | |
h = self.conv2(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False): | |
super(Decoder, self).__init__() | |
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ) | |
# self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ) | |
self.dropout = nn.Dropout2d(0.1) if dropout else None | |
def __call__(self, x, skip=None): | |
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) | |
if skip is not None: | |
skip = spec_utils.crop_center(skip, x) | |
x = torch.cat([x, skip], dim=1) | |
h = self.conv1(x) | |
# h = self.conv2(h) | |
if self.dropout is not None: | |
h = self.dropout(h) | |
return h | |
class ASPPModule(nn.Module): | |
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False): | |
super(ASPPModule, self).__init__() | |
self.conv1 = nn.Sequential( | |
nn.AdaptiveAvgPool2d((1, None)), | |
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ) | |
) | |
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ) | |
self.conv3 = Conv2DBNActiv( | |
nin, nout, 3, 1, dilations[0], dilations[0], activ=activ | |
) | |
self.conv4 = Conv2DBNActiv( | |
nin, nout, 3, 1, dilations[1], dilations[1], activ=activ | |
) | |
self.conv5 = Conv2DBNActiv( | |
nin, nout, 3, 1, dilations[2], dilations[2], activ=activ | |
) | |
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ) | |
self.dropout = nn.Dropout2d(0.1) if dropout else None | |
def forward(self, x): | |
_, _, h, w = x.size() | |
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True) | |
feat2 = self.conv2(x) | |
feat3 = self.conv3(x) | |
feat4 = self.conv4(x) | |
feat5 = self.conv5(x) | |
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1) | |
out = self.bottleneck(out) | |
if self.dropout is not None: | |
out = self.dropout(out) | |
return out | |
class LSTMModule(nn.Module): | |
def __init__(self, nin_conv, nin_lstm, nout_lstm): | |
super(LSTMModule, self).__init__() | |
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0) | |
self.lstm = nn.LSTM( | |
input_size=nin_lstm, | |
hidden_size=nout_lstm // 2, | |
bidirectional=True | |
) | |
self.dense = nn.Sequential( | |
nn.Linear(nout_lstm, nin_lstm), | |
nn.BatchNorm1d(nin_lstm), | |
nn.ReLU() | |
) | |
def forward(self, x): | |
N, _, nbins, nframes = x.size() | |
h = self.conv(x)[:, 0] # N, nbins, nframes | |
h = h.permute(2, 0, 1) # nframes, N, nbins | |
h, _ = self.lstm(h) | |
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins | |
h = h.reshape(nframes, N, 1, nbins) | |
h = h.permute(1, 2, 3, 0) | |
return h | |