File size: 12,233 Bytes
426874e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# Copyright (2024) Earth Species Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import time
from datetime import datetime
from pathlib import Path
from typing import Any, Literal

import numpy as np
import resampy
import soundfile as sf
import torch
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader, DistributedSampler

from NatureLM.dist_utils import get_rank, get_world_size

logger = logging.getLogger(__name__)


TARGET_SAMPLE_RATE = 16_000


def snr_scale(clean, noise, snr):
    # Ensure both clean and noise have the same length
    assert clean.shape == noise.shape, "Clean and noise must have the same shape."

    # Compute power (mean squared amplitude)
    power_signal = torch.mean(clean**2)
    power_noise = torch.mean(noise**2)

    # Prevent division by zero
    epsilon = 1e-10
    power_noise = torch.clamp(power_noise, min=epsilon)

    # Calculate desired noise power based on SNR
    desired_noise_power = power_signal / (10 ** (snr / 10))

    # Scale noise to achieve the desired noise power
    scale = torch.sqrt(desired_noise_power / power_noise)
    scaled_noise = scale * noise

    return scaled_noise


def time_scale(signal, scale=2.0, rngnp=None, seed=42):
    if rngnp is None:
        rngnp = np.random.default_rng(seed=seed)
    scaling = np.power(scale, rngnp.uniform(-1, 1))
    output_size = int(signal.shape[-1] * scaling)
    ref = torch.arange(output_size, device=signal.device, dtype=signal.dtype).div_(scaling)
    ref1 = ref.clone().type(torch.int64)
    ref2 = torch.min(ref1 + 1, torch.full_like(ref1, signal.shape[-1] - 1, dtype=torch.int64))
    r = ref - ref1.type(ref.type())
    scaled_signal = signal[..., ref1] * (1 - r) + signal[..., ref2] * r

    ## trim or zero pad to torche original size
    if scaled_signal.shape[-1] > signal.shape[-1]:
        nframes_offset = (scaled_signal.shape[-1] - signal.shape[-1]) // 2
        scaled_signal = scaled_signal[..., nframes_offset : nframes_offset + signal.shape[-1]]
    else:
        nframes_diff = signal.shape[-1] - scaled_signal.shape[-1]
        pad_left = int(np.random.uniform() * nframes_diff)
        pad_right = nframes_diff - pad_left
        scaled_signal = F.pad(input=scaled_signal, pad=(pad_left, pad_right), mode="constant", value=0)
    return scaled_signal


def mel_frequencies(n_mels, fmin, fmax):
    def _hz_to_mel(f):
        return 2595 * np.log10(1 + f / 700)

    def _mel_to_hz(m):
        return 700 * (10 ** (m / 2595) - 1)

    low = _hz_to_mel(fmin)
    high = _hz_to_mel(fmax)

    mels = np.linspace(low, high, n_mels)

    return _mel_to_hz(mels)


def now_as_str() -> str:
    return datetime.now().strftime("%Y%m%d%H%M")


def get_dataloader(dataset, config, is_train=True, use_distributed=True):
    if use_distributed:
        sampler = DistributedSampler(dataset, shuffle=is_train, num_replicas=get_world_size(), rank=get_rank())
    else:
        sampler = None

    loader = DataLoader(
        dataset,
        batch_size=config.batch_size_train if is_train else config.batch_size_eval,
        num_workers=config.num_workers,
        pin_memory=False,
        sampler=sampler,
        shuffle=sampler is None and is_train,
        collate_fn=dataset.collater,
        drop_last=is_train,
    )

    if is_train:
        loader = IterLoader(loader, use_distributed=use_distributed)

    return loader


def apply_to_sample(f, sample):
    if len(sample) == 0:
        return {}

    def _apply(x):
        if torch.is_tensor(x):
            return f(x)
        elif isinstance(x, dict):
            return {key: _apply(value) for key, value in x.items()}
        elif isinstance(x, list):
            return [_apply(x) for x in x]
        else:
            return x

    return _apply(sample)


def move_to_device(sample, device):
    def _move_to_device(tensor):
        return tensor.to(device)

    return apply_to_sample(_move_to_device, sample)


def prepare_sample(samples, cuda_enabled=True):
    if cuda_enabled:
        samples = move_to_device(samples, "cuda")

    # TODO fp16 support

    return samples


def prepare_sample_dist(samples, device):
    samples = move_to_device(samples, device)

    # TODO fp16 support

    return samples


class IterLoader:
    """
    A wrapper to convert DataLoader as an infinite iterator.

    Modified from:
        https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
    """

    def __init__(self, dataloader: DataLoader, use_distributed: bool = False):
        self._dataloader = dataloader
        self.iter_loader = iter(self._dataloader)
        self._use_distributed = use_distributed
        self._epoch = 0

    @property
    def epoch(self) -> int:
        return self._epoch

    def __next__(self):
        try:
            data = next(self.iter_loader)
        except StopIteration:
            self._epoch += 1
            if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
                self._dataloader.sampler.set_epoch(self._epoch)
            time.sleep(2)  # Prevent possible deadlock during epoch transition
            self.iter_loader = iter(self._dataloader)
            data = next(self.iter_loader)

        return data

    def __iter__(self):
        return self

    def __len__(self):
        return len(self._dataloader)


def prepare_one_sample(wav_path: str, wav_processor=None, cuda_enabled=True) -> dict:
    """Prepare a single sample for inference.

    Args:
        wav_path: Path to the audio file.
        wav_processor: A function to process the audio file.
        cuda_enabled: Whether to move the sample to the GPU.
    """
    audio, sr = sf.read(wav_path)
    if len(audio.shape) == 2:  # stereo to mono
        audio = audio.mean(axis=1)
    if len(audio) < sr:  # pad audio to at least 1s
        sil = np.zeros(sr - len(audio), dtype=float)
        audio = np.concatenate((audio, sil), axis=0)
    audio = audio[: sr * 10]  # truncate audio to at most 10s

    # spectrogram = wav_processor(audio, sampling_rate=sr, return_tensors="pt")["input_features"]
    print("audio shape", audio.shape)

    audio_t = torch.tensor(audio).unsqueeze(0)
    audio_t = torchaudio.functional.resample(audio_t, sr, TARGET_SAMPLE_RATE)
    print("audio shape after resample", audio_t.shape)

    samples = {
        "raw_wav": audio_t,
        "padding_mask": torch.zeros(len(audio), dtype=torch.bool).unsqueeze(0),
        "audio_chunk_sizes": [1],
    }
    if cuda_enabled:
        samples = move_to_device(samples, "cuda")

    return samples


def prepare_one_sample_waveform(audio, cuda_enabled=True, sr=16000):
    print("shape", audio.shape)
    if len(audio.shape) == 2:  # stereo to mono
        print("converting stereo to mono?")
        audio = audio.mean(axis=1)
    if len(audio) < sr:  # pad audio to at least 1s
        sil = np.zeros(sr - len(audio), dtype=float)
        audio = np.concatenate((audio, sil), axis=0)
    audio = audio[: sr * 10]  # truncate audio to at most 30s

    samples = {
        "raw_wav": torch.tensor(audio).unsqueeze(0).type(torch.DoubleTensor),
        "padding_mask": torch.zeros(len(audio), dtype=torch.bool).unsqueeze(0),
    }
    if cuda_enabled:
        samples = move_to_device(samples, "cuda")

    return samples


def prepare_sample_waveforms(audio_paths, cuda_enabled=True, sr=TARGET_SAMPLE_RATE, max_length_seconds=10):
    batch_len = sr  # minimum length of audio
    audios = []
    for audio_path in audio_paths:
        audio, loaded_sr = sf.read(audio_path)
        if len(audio.shape) == 2:
            audio = audio[:, 0]
        audio = audio[: loaded_sr * 10]
        audio = resampy.resample(audio, loaded_sr, sr)
        audio = torch.from_numpy(audio)

        if len(audio) < sr * max_length_seconds:
            pad_size = sr * max_length_seconds - len(audio)
            audio = torch.nn.functional.pad(audio, (0, pad_size))
        audio = torch.clamp(audio, -1.0, 1.0)
        if len(audio) > batch_len:
            batch_len = len(audio)
        audios.append(audio)
    padding_mask = torch.zeros((len(audios), batch_len), dtype=torch.bool)
    for i in range(len(audios)):
        if len(audios[i]) < batch_len:
            pad_len = batch_len - len(audios[i])
            sil = torch.zeros(pad_len, dtype=torch.float32)
            audios[i] = torch.cat((audios[i], sil), dim=0)
            padding_mask[i, len(audios[i]) :] = True
    audios = torch.stack(audios, dim=0)

    samples = {
        "raw_wav": audios,
        "padding_mask": padding_mask,
        "audio_chunk_sizes": [len(audio_paths)],
    }
    if cuda_enabled:
        samples = move_to_device(samples, "cuda")

    return samples


def generate_sample_batches(
    audio_path,
    cuda_enabled: bool = True,
    sr: int = TARGET_SAMPLE_RATE,
    chunk_len: int = 10,
    hop_len: int = 5,
    batch_size: int = 4,
):
    audio, loaded_sr = sf.read(audio_path)
    if len(audio.shape) == 2:  # stereo to mono
        audio = audio.mean(axis=1)
    audio = torchaudio.functional.resample(torch.from_numpy(audio), loaded_sr, sr)
    hop_len = hop_len * sr
    chunk_len = max(len(audio), chunk_len * sr)
    chunks = []

    for i in range(0, len(audio), hop_len):
        chunk = audio[i : i + chunk_len]
        if len(chunk) < chunk_len:
            break
        chunks.append(chunk)

    for i in range(0, len(chunks), batch_size):
        batch = chunks[i : i + batch_size]
        padding_mask = torch.zeros((len(batch), sr * chunk_len), dtype=torch.bool)
        batch = torch.stack(batch, dim=0)
        samples = {
            "raw_wav": batch,
            "padding_mask": padding_mask,
            "audio_chunk_sizes": [1 for _ in range(len(batch))],
        }
        if cuda_enabled:
            samples = move_to_device(samples, "cuda")
        yield samples


def prepare_samples_for_detection(samples, prompt, label):
    prompts = [prompt for i in range(len(samples["raw_wav"]))]
    labels = [label for i in range(len(samples["raw_wav"]))]
    task = ["detection" for i in range(len(samples["raw_wav"]))]
    samples["prompt"] = prompts
    samples["text"] = labels
    samples["task"] = task
    return samples


def universal_torch_load(
    f: str | os.PathLike,
    *,
    cache_mode: Literal["none", "use", "force"] = "none",
    **kwargs,
) -> Any:
    """
    Wrapper function for torch.load that can handle GCS paths.

    This function provides a convenient way to load PyTorch objects from both local and
    Google Cloud Storage (GCS) paths. For GCS paths, it can optionally caches the
    downloaded files locally to avoid repeated downloads.

    The cache location is determined by:
    1. The ESP_CACHE_HOME environment variable if set
    2. Otherwise defaults to ~/.cache/esp/

    Args:
        f: File-like object, string or PathLike object.
           Can be a local path or a GCS path (starting with 'gs://').
        cache_mode (str, optional): Cache mode for GCS files. Options are:
            "none": No caching (use bucket directly)
            "use": Use cache if available, download if not
            "force": Force redownload even if cache exists
            Defaults to "none".
        **kwargs: Additional keyword arguments passed to torch.load().

    Returns:
        The object loaded from the file using torch.load.

    Raises:
        IsADirectoryError: If the GCS path points to a directory instead of a file.
        FileNotFoundError: If the local file does not exist.
    """

    f = Path(f)
    if not f.exists():
        raise FileNotFoundError(f"File does not exist: {f}")

    with open(f, "rb") as opened_file:
        return torch.load(opened_file, **kwargs)