# %% # -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ from numpy import arange import xarray as xr import highspy from linopy import Model, EQUAL import pandas as pd import plotly.express as px import streamlit as st import sourced as src import numpy as np import tempfile ## Setting write_pickle_from_standard_excel = True st.set_page_config(layout="wide") # you can create columns to better manage the flow of your page # this command makes 3 columns of equal width col1, col2, col3, col4 = st.columns(4) col1.header("Data Input") col4.header("Download Results") # Color dictionary for figures color_dict = {'Biomasse': 'lightgreen', 'Braunkohle': 'red', 'Erdgas': 'orange', 'Steinkohle': 'darkgrey', 'Erdöl': 'brown', 'Laufwasser': 'aquamarine', 'Kernenergie': 'cyan', 'PV': 'yellow', 'WindOff': 'darkblue', 'WindOn': 'blue', 'Batteriespeicher': 'purple'} # %% with col1: with open('Input_Jahr_2021.xlsx', 'rb') as f: st.download_button('Download Excel Vorlage', f, file_name='Input_Jahr_2021.xlsx') # Defaults to 'application/octet-stream' #url_excel = r'Input_Jahr_2021.xlsx' url_excel = st.file_uploader(label = 'Excel Datei hochladen') if url_excel == None: if write_pickle_from_standard_excel: url_excel = r'Input_Jahr_2021.xlsx' sets_dict, params_dict= src.load_data_from_excel(url_excel, write_to_pickle_flag= True) sets_dict, params_dict = src.load_from_pickle() with col4: st.write('Lauf mit Standarddaten') else: # sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = False) sets_dict, params_dict= src.load_data_from_excel(url_excel, write_to_pickle_flag = True) with col4: st.write('Lauf mit Nutzerdaten') # Debugging output to verify that sets_dict is defined # st.write(f"sets_dict: {sets_dict}") # st.write(f"params_dict: {params_dict}") # # %% def timstep_aggregate(time_steps_aggregate, xr ): return xr.rolling( t = time_steps_aggregate).mean().sel(t = t[0::time_steps_aggregate]) #s_t_r_iRes = timstep_aggregate(6,s_t_r_iRes) # %% #sets_dict, params_dict= src.load_data_from_excel(url_excel,write_to_pickle_flag=True) # %% #sets_dict, params_dict= load_data_from_excel(url_excel, load_from_pickle_flag = False) # Unpack sets_dict into the workspace t = sets_dict['t'] t_original = sets_dict['t'] i = sets_dict['i'] iSto = sets_dict['iSto'] iConv = sets_dict['iConv'] # iPtG = sets_dict['iPtG'] iRes = sets_dict['iRes'] # iHyRes = sets_dict['iHyRes'] # Unpack params_dict into the workspace l_co2 = params_dict['l_co2'] p_co2 = params_dict['p_co2'] eff_i = params_dict['eff_i'] life_i = params_dict['life_i'] c_fuel_i = params_dict['c_fuel_i'] c_other_i = params_dict['c_other_i'] c_inv_i = params_dict['c_inv_i'] co2_factor_i = params_dict['co2_factor_i'] c_var_i = params_dict['c_var_i'] K_0_i = params_dict['K_0_i'] e2p_iSto = params_dict['e2p_iSto'] # Sliders and input boxes for parameters with col2: # Slider for CO2 limit [mio. t] l_co2 = st.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label="CO2 Limit [Mio. t]", step=10) # # Slider for H2 price / usevalue [€/MWH_th] # price_h2 = st.slider(value=100, min_value=0, max_value=300, label="Wasserstoffpreis [€/MWh]", step=10) for i_idx in c_fuel_i.get_index('i'): if i_idx in ['Braunkohle']: c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Preis [€/MWh]' , step=10) dt = st.number_input(label="Zeitliche Auflösung [h]", min_value=1, max_value=len(t), value=6, help="Geben Sie nur ganze Zahlen zwischen 1 und 8760 (oder 8784 für Schaltjahre) ein.") with col3: # Slider for CO2 limit [mio. t] for i_idx in c_fuel_i.get_index('i'): if i_idx in ['Steinkohle', 'Erdöl','Erdgas']: c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Preis [€/MWh]' , step=10) # technologies_invest = st.multiselect(label='Technologien für Investitionen', options=i, default=['Biomasse','Laufwasser','Kernenergie','Braunkohle','Steinkohle','Erdöl','Erdgas','WindOff','WindOn','PV','Batteriespeicher']) technologies_invest = st.multiselect(label='Technologien für Investitionen', options=i, default=['Kernenergie','Braunkohle','Steinkohle','Erdgas', 'Erdöl','Biomasse','Laufwasser','WindOn','WindOff','PV','Batteriespeicher']) technologies_no_invest = [x for x in i if x not in technologies_invest] # Aggregate time series D_t = timstep_aggregate(dt,params_dict['D_t']) s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes']) # h_t = timstep_aggregate(dt,params_dict['h_t']) t = D_t.get_index('t') partial_year_factor = (8760/len(t))/dt #time_steps_aggregate = 6 #= xr_profiles.rolling( time_step = time_steps_aggregate).mean().sel(time_step = time[0::time_steps_aggregate]) price_co2 = 0 # Aggregate time series #D_t = timstep_aggregate(dt,params_dict['D_t']) #s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes']) #h_t = timstep_aggregate(dt,params_dict['h_t']) #t = D_t.get_index('t') #partial_year_factor = (8760/len(t))/dt #technologies_no_invest = st.multiselect(label='Technology invest', options=i) #technologies_no_invest = ['Electrolyzer','Biomass','RoR','Hydro Water Reservoir','Nuclear'] # %% ### Variables m = Model() C_tot = m.add_variables(name = 'C_tot') # Total costs C_op = m.add_variables(name = 'C_op', lower = 0) # Operational costs C_inv = m.add_variables(name = 'C_inv', lower = 0) # Investment costs K = m.add_variables(coords = [i], name = 'K', lower = 0) # Endogenous capacity y = m.add_variables(coords = [t,i], name = 'y', lower = 0) # Electricity production --> für Elektrolyseure ausschließen y_ch = m.add_variables(coords = [t,i], name = 'y_ch', lower = 0) # Electricity consumption --> für alles außer Elektrolyseure und Speicher ausschließen l = m.add_variables(coords = [t,i], name = 'l', lower = 0) # Storage filling level w = m.add_variables(coords = [t], name = 'w', lower = 0) y_curt = m.add_variables(coords = [t,i], name = 'y_curt', lower = 0) # RES curtailment # y_h2 = m.add_variables(coords = [t,i], name = 'y_h2', lower = 0) ## Objective function C_tot = C_op + C_inv m.add_objective(C_tot) ## Costs terms for objective function # Operational costs (minus revenue for produced hydrogen) # C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum() * dt - (y_h2.sel(i = iPtG) * price_h2).sum() * dt == C_op, name = 'C_op_sum') C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum() * dt == C_op, name = 'C_op_sum') # Investment costs C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum') ## Load serving loadserve_t = m.add_constraints((((y ).sum(dims = 'i') - y_ch.sum(dims = 'i')) * dt == D_t.sel(t = t) * dt), name = 'load') # loadserve_t = m.add_constraints((((y ).sum(dims = 'i') ) * dt == D_t.sel(t = t) * dt), name = 'load') ## Maximum capacity limit maxcap_i_t = m.add_constraints((y - K <= K_0_i), name = 'max_cap') ## Maximum capacity limit maxcap_invest_i = m.add_constraints((K.sel(i = technologies_no_invest) <= 0), name = 'max_cap_invest') ## Prevent power production by PtG # no_power_prod_iPtG_t = m.add_constraints((y.sel(i = iPtG) <= 0), name = 'prevent_ptg_prod') ## Maximum storage charging and discharging maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) - y_ch.sel(i = iSto) - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name = 'max_cha') ## Maximum electrolyzer capacity # ptg_prod_iPtG_t = m.add_constraints((y_ch.sel(i = iPtG) - K.sel(i = iPtG) <= K_0_i.sel(i = iPtG)), name = 'max_cha_ptg') ## PtG H2 production # h2_prod_iPtG_t = m.add_constraints(y_ch.sel(i = iPtG) * eff_i.sel(i = iPtG) == y_h2.sel(i = iPtG), name = 'ptg_h2_prod') ## Infeed of renewables infeed_iRes_t = m.add_constraints((y.sel(i = iRes) - s_t_r_iRes.sel(i = iRes).sel(t = t) * K.sel(i = iRes) + y_curt.sel(i = iRes) == s_t_r_iRes.sel(i = iRes).sel(t = t) * K_0_i.sel(i = iRes)), name = 'infeed') ## Maximum filling level restriction storage power plant maxcapsto_iSto_t = m.add_constraints((l.sel(i = iSto) - K.sel(i = iSto) * e2p_iSto.sel(i = iSto) <= K_0_i.sel(i = iSto) * e2p_iSto.sel(i = iSto)), name = 'max_sto_filling') ## Filling level restriction hydro reservoir # filling_iHydro_t = m.add_constraints(l.sel(i = iHyRes) - l.sel(i = iHyRes).roll(t = -1) + y.sel(i = iHyRes) * dt == h_t.sel(t = t) * dt, name = 'filling_level_hydro') ## Filling level restriction other storages filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) + (y.sel(i = iSto) / eff_i.sel(i = iSto)) * dt - y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level') ## CO2 limit # l_co2 = 50 CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum() <= l_co2 * 1_000_000 , name = 'CO2_limit') ## set run-of-river power plants capacity limit to 5 GW RoR_cap = m.add_constraints(K.sel(i = 'Laufwasser') <= 5000, name = 'RoR_cap') Biomass_cap = m.add_constraints(K.sel(i = 'Biomasse') <= 9000, name = 'Biomass_cap') # Nuclear_cap = m.add_constraints(K.sel(i = 'Kernenergie') <= 3000, name = 'Kernenergie_cap') # nuclear_production_constraint = m.add_constraints(y.sel(i='Kernenergie') == K.sel(i='Kernenergie'), name='Nuclear_Production_Capacity') # %% m.solve(solver_name = 'highs') st.markdown("---") colb1, colb2 = st.columns(2) # %% #c_var_i.to_dataframe(name='VarCosts') # %% # Installed Cap # Assuming df_excel has columns 'All' and 'Capacities' fig = px.bar((m.solution['K']+K_0_i).to_dataframe(name='K').reset_index(), \ y='i', x='K', orientation='h', title='Installierte Kapazitäten insgesamt [MW]', color='i') #fig # %% total_costs = float(m.solution['C_inv'].values) + float(m.solution['C_op'].values) total_costs_rounded = round(total_costs/1e9, 2) df_total_costs = pd.DataFrame({'Total costs':[total_costs]}) with colb1: st.write('Gesamtkosten: ' + str(total_costs_rounded) + ' Mrd. €') # %% #df_Co2_price = pd.DataFrame({'CO2_Price: ':[float(m.constraints['CO2_limit'].dual.values) * (-1)]}) CO2_price = float(m.constraints['CO2_limit'].dual.values) * (-1) CO2_price_rounded = round(CO2_price, 2) df_CO2_price = pd.DataFrame({'CO2 price':[CO2_price]}) with colb2: #st.write(str(df_Co2_price)) st.write('CO2 Preis: ' + str(CO2_price_rounded) + ' €/t') # %% df_new_capacities = m.solution['K'].to_dataframe().reset_index() fig = px.bar(m.solution['K'].to_dataframe().reset_index(), y='i', x='K', orientation='h', title='Neu installierte Kapazitäten [MW]', color='i', color_discrete_map=color_dict) with colb1: fig # %% D_t_sorted = D_t.sortby(D_t, ascending = False).to_dataframe().reset_index() # NaN entries to the end D_t_sorted = D_t_sorted.sort_values(by='Nachfrage', ascending=False).reset_index(drop=True) # expand df_price to the size of t D_t_sorted = D_t_sorted.loc[D_t_sorted.index.repeat(dt)].reset_index(drop=True) x_loadcurve = np.arange(1, D_t_sorted['Nachfrage'].size + 1) # residual load curve df_production_res = m.solution['y'].sel(i = iRes).to_dataframe().reset_index() # sum up over t df_production_res_sum = df_production_res.groupby('t')['y'].sum().reset_index() # D_t into dateframe D_t_df = D_t.to_dataframe().reset_index() df_residual = D_t_df['Nachfrage'] - df_production_res_sum['y'] # sort df_residual = df_residual.sort_values(ascending=False).reset_index(drop=True) df_residual = df_residual.loc[df_residual.index.repeat(dt)].reset_index(drop=True) df_combined = pd.DataFrame({ 'x': np.concatenate([x_loadcurve, x_loadcurve]), 'y': np.concatenate([D_t_sorted['Nachfrage'], df_residual]), 'label': ['Nachfrage'] * len(x_loadcurve) + ['Residual Load'] * len(x_loadcurve) }) # Create the integrated plot using Plotly Express fig = px.line(df_combined, x='x', y='y', color='label', title='Lastdauerlinie [MW]', labels={"x": "Stunden im Jahr", "y": "Leistung [MW]"}) # Specific updates for each trace fig.for_each_trace( lambda trace: trace.update(line=dict(color='blue')) if trace.name == 'Nachfrage' else trace.update(line=dict(color='red', dash='dash')) ) with colb2: fig.update_layout( legend_title='Legende' ) fig # fig.show() # %% # calculate full load hours i_with_capacity = m.solution['K'].where( m.solution['K'] > 0).dropna(dim = 'i').get_index('i') df_production = m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index() df_capacity = m.solution['K'].sel(i = i_with_capacity).to_dataframe().reset_index() df_production_sum = (df_production.groupby('i')['y'].sum() * dt).round(0).reset_index() # reorder rows according to i_with_capacity df_production_sum = df_production_sum.set_index('i').loc[i_with_capacity].reset_index() # df_production_sum['i'] = pd.Categorical(df_production_sum['i'], categories=desired_order, ordered=True) df_fullload = df_production_sum['y']/df_capacity['K'] # to dataframe df_fullload = df_fullload.to_frame() # rename column df_fullload.columns = ['fullload'] df_fullload['i'] = df_production_sum['i'] # change order of columns df_fullload = df_fullload[['i', 'fullload']] fig = px.bar(df_fullload, y='i', x=df_fullload['fullload'], orientation='h', title='Volllaststunden [h]', color='i', color_discrete_map=color_dict) with colb1: fig # fig.show() # %% fig = px.area(m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t', title='Stromproduktion Lastgang [MW]', color='i', color_discrete_map=color_dict) fig.update_traces(line=dict(width=0)) fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) with colb1: fig # fig.show() # %% df_price = m.constraints['load'].dual.to_dataframe().reset_index() # expand df_price to the size of t df_price = df_price.loc[df_price.index.repeat(dt)].reset_index(drop=True) # sort prices descending df_sorted_price = df_price["dual"].sort_values(ascending=False).reset_index(drop=True) # generate x-axis for price duration curve x_price = np.arange(1, df_sorted_price.size + 1) fig = px.line(y=df_sorted_price, x=x_price, title='Preisdauerlinie [€/MWh]', labels={"x": "Stunden im Jahr"},range_y=[0,350]) with colb2: fig # %% fig = px.line(df_price, y='dual', x='t', title='Strompreis [€/MWh]', range_y=[0,350]) with colb2: fig # %% # curtailment df_curtailment = m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index() fig = px.area(m.solution['y_curt'].sel(i = iRes).to_dataframe().reset_index(), y='y_curt', x='t', title='Abregelung [MWh]', color='i', color_discrete_map=color_dict) fig.update_traces(line=dict(width=0)) fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) with colb1: fig # %% df_charging = m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index() fig = px.area(m.solution['y_ch'].sel(i = iSto).to_dataframe().reset_index(), y='y_ch', x='t', title='Speicherbeladung [MWh]', color='i', color_discrete_map=color_dict) fig.update_traces(line=dict(width=0)) fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) with colb2: fig # %% # df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index() # df_contr_marg['dual'] = df_contr_marg['dual'] / dt * (-1) # fig = px.line(df_contr_marg, y='dual', x='t',title='Deckungsbeitrag [€]', color='i', range_y=[0,350], color_discrete_map=color_dict) # with colb2: # fig # %% # generate dataframe steplength = 1 same size as t # x = np.arange(1, t.size + 1) x = np.arange(1,t.size) df_production_pivot = df_production.pivot(index='t', columns='i', values='y') # sort columns according to i_with_capacity df_production_pivot = df_production_pivot[i_with_capacity] df_efficiency = eff_i.sel(i = i_with_capacity) co2_factor_i_with_capacity = co2_factor_i.sel(i = i_with_capacity) # colour_dict = {i: color_dict[i] for i in i_with_capacity} color_dict_with_capacity = {i: color_dict[i] for i in i_with_capacity} desired_order = i_with_capacity.tolist() # multiply df_production with co2 factor df_production_emissions = df_production_pivot/df_efficiency * co2_factor_i_with_capacity*dt # unpivot df_production_emissions, sorting by datetime df_production_emissions_unpivot = df_production_emissions.reset_index().melt(id_vars='t', var_name='i', value_name='y') df_production_emissions_unpivot['i'] = pd.Categorical(df_production_emissions_unpivot['i'], categories=desired_order, ordered=True) df_production_emissions_unpivot = df_production_emissions_unpivot.sort_values(by=['t', 'i']) # rearrange rows according to i_with_capacity # generate area plot of df_production_emissions_unpivot over t fig = px.area(df_production_emissions_unpivot, y='y', x='t', title='Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity) fig.update_traces(line=dict(width=0)) fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) with colb1: fig # %% # Sum up second row of df_production_emissions df_production_emissions_sum = df_production_emissions.copy() df_production_emissions_sum['total'] = df_production_emissions_sum.sum(axis=1) # sort by total generation df_production_emissions_sum = df_production_emissions_sum.sort_values(by='total', ascending=True) # generate new dataframe where all columns but dateTime are cumulated df_production_emissions_sum_cumsum = df_production_emissions_sum.cumsum(axis=0) # remove columns which are completely zero df_production_emissions_sum_cumsum = df_production_emissions_sum_cumsum.loc[:, (df_production_emissions_sum_cumsum != 0).any(axis=0)] # unpivot df_production_emissions_sum_cumsum df_production_emissions_sum_unpivot = df_production_emissions_sum_cumsum.reset_index().melt(id_vars='t', var_name='i', value_name='y') # keep i = i_with_capacity df_production_emissions_sum_unpivot = df_production_emissions_sum_unpivot[df_production_emissions_sum_unpivot['i'].isin(i_with_capacity)].reset_index(drop=True) # set values 0= NaN df_production_emissions_sum_unpivot['y'] = df_production_emissions_sum_unpivot['y'].replace(0, np.nan) # generate layered area plot of unpivoted_df_sorted_cap over num fig = px.area(df_production_emissions_sum_unpivot, y='y', x='t', title='Kumulierte Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity) # fig = px.area(unpivoted_df_sorted_cap, y='cumsum', x='t', title='Kumulierte Co2-Emissionen [t]', color='i', color_discrete_map=color_dict_with_capacity) # Update traces fig.update_traces(line=dict(width=0)) fig.for_each_trace(lambda trace: trace.update(fillcolor=trace.line.color)) # fig.show() with colb2: fig # %% # plot investment costs # c-inv_i to dataframe if c_inv_i.name is None: c_inv_i.name = 'c_inv_i' c_inv_i_df = c_inv_i.to_dataframe().reset_index() # multiply c_inv_i_df with K df_invest_costs = df_new_capacities['K']* c_inv_i df_invest_costs = df_invest_costs.to_frame() df_invest_costs.columns = ['K'] df_invest_costs['i'] = df_new_capacities['i'] fig = px.bar(df_invest_costs, y='i', x='K', orientation='h', title='Investitionskosten [Mrd. €]', color='i', color_discrete_map=color_dict) # fig.show() with colb1: fig # %% df_production_all = m.solution['y'].sel(i = i).to_dataframe().reset_index() # Deckungsbeitrag = Erlöse - Kosten df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index() # # contr_margin for i_with_capacity # df_contr_marg = df_contr_marg[df_contr_marg['i'].isin(i_with_capacity)]. reset_index(drop=True) # # multiply df_merged = pd.merge(df_production_all, df_contr_marg, on=['t', 'i']) # Perform the multiplication df_merged['y_new'] = df_merged['y'] * df_merged['dual'] df_merged = df_merged[['t', 'i', 'y_new']] df_contr_marg_sum = df_merged.groupby('i')['y_new'].sum().reset_index() df_production_res = m.solution['y'].sel(i = iRes).to_dataframe().reset_index() df_price_res = m.constraints['load'].dual.to_dataframe().reset_index() # multiply with df_price_res df_merged_res = pd.merge(df_production_res, df_price_res, on='t') df_merged_res['multiplied_value'] = df_merged_res['y'] * df_merged_res['dual'] df_merged_res = df_merged_res[['t', 'i', 'multiplied_value']] df_contr_marg_res = df_merged_res.groupby('i')['multiplied_value'].sum().reset_index() df_contr_marg_res['multiplied_value'] = df_contr_marg_res['multiplied_value'] * -dt df_contr_marg_sum = pd.merge(df_contr_marg_sum, df_contr_marg_res, on='i', how='left') df_contr_marg_sum['y_new'] = df_contr_marg_sum['multiplied_value'].combine_first(df_contr_marg_sum['y_new']) df_contr_marg_sum = df_contr_marg_sum.drop(columns=['multiplied_value']) df_contr_marg_sum['y'] = df_contr_marg_sum['y_new']*(-1) # rearrange rows according to i df_contr_marg_sum = df_contr_marg_sum.set_index('i').loc[i].reset_index() # # # barplot fig = px.bar(df_contr_marg_sum, y='i', x='y', orientation='h', title='Deckungsbeitrag [Mrd. €]', color='i', color_discrete_map=color_dict) # fig.show() with colb2: fig # %% # #Add pie chart of total production per technology type in GWh(divide by 1000) # df_production_sum = (df_production.groupby('i')['y'].sum() * dt / 1000 ).round(0).sort_values(ascending=False).reset_index() # fig = px.pie(df_production_sum, names="i", values='y', title='Gesamtproduktion [GWh] als Kuchendiagramm', # color='i', color_discrete_map=color_dict) # with colb2: # fig # %% # # %% # df_h2_prod = m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index() # fig = px.area(m.solution['y_h2'].sel(i = iPtG).to_dataframe().reset_index(), y='y_h2', x='t', title='Produktion Wasserstoff [MWh_th]', color='i', color_discrete_map=color_dict) # fig.update_traces(line=dict(width=0)) # fig.for_each_trace(lambda trace: trace.update(fillcolor = trace.line.color)) # with colb2: # fig # %% # #add pie chart which shows new capacities # #round number of new capacities # df_new_capacities_rounded = m.solution['K'].round(0).to_dataframe() # #drop all technologies with K<= 0 # df_new_capacities_rounded = df_new_capacities_rounded[df_new_capacities_rounded["K"] > 0].reset_index() # total_k_sum = df_new_capacities_rounded["K"].sum() # #df_new_capacities_rounded["percentage"] = df_new_capacities_rounded["K"].apply(lambda x: (x/total_k_sum)*100).abs().round(2) # fig = px.pie(df_new_capacities_rounded, names='i', values='K', title='Neu installierte Kapazitäten [MW] als Kuchendiagramm', # color='i', color_discrete_map=color_dict) # with colb1: # fig # %% ((m.solution['y'] / eff_i) * co2_factor_i * dt).sum() # %% import pandas as pd from io import BytesIO #from pyxlsb import open_workbook as open_xlsb import streamlit as st import xlsxwriter # %% output = BytesIO() # ## def disaggregate_df(df): if not "t" in list(df.columns): return df #df_repeated = df.iloc[idx_repeat,:].reset_index(drop = True).drop('t', axis = 1) df_t_all = pd.DataFrame({"t_all": t_original.to_series(), 't': t.repeat(dt)}).reset_index(drop=True) ## %% df_output = df.merge(df_t_all,on = 't').drop('t',axis = 1).rename({'t_all':'t'}, axis = 1) # last column to first column cols = list(df_output.columns) cols = [cols[-1]] + cols[:-1] df_output = df_output[cols] return df_output.sort_values('t') # Create a Pandas Excel writer using XlsxWriter as the engine with pd.ExcelWriter(output, engine='xlsxwriter') as writer: # Write each DataFrame to a different sheet disaggregate_df(df_total_costs).to_excel(writer, sheet_name='Gesamtkosten', index=False) disaggregate_df(df_CO2_price).to_excel(writer, sheet_name='CO2 Preis', index=False) disaggregate_df(df_price).to_excel(writer, sheet_name='Preise', index=False) # disaggregate_df(df_contr_marg).to_excel(writer, sheet_name='Deckungsbeiträge', index=False) disaggregate_df(df_new_capacities).to_excel(writer, sheet_name='Kapazitäten', index=False) disaggregate_df(df_production).to_excel(writer, sheet_name='Produktion', index=False) disaggregate_df(df_charging).to_excel(writer, sheet_name='Ladevorgänge', index=False) disaggregate_df(D_t.to_dataframe().reset_index()).to_excel(writer, sheet_name='Nachfrage', index=False) disaggregate_df(df_curtailment).to_excel(writer, sheet_name='Abregelung', index=False) # disaggregate_df(df_h2_prod).to_excel(writer, sheet_name='H2 produktion', index=False) with col4: st.download_button( label="Download Excel Arbeitsmappe Ergebnisse", data=output.getvalue(), file_name="Arbeitsmappe_Ergebnisse.xlsx", mime="application/vnd.ms-excel" ) # %%