import numpy as np import onnxruntime import onnx import gradio as gr import requests import json from extractnet import Extractor import math from transformers import AutoTokenizer import spacy import os from transformers import pipeline import itertools MODEL_TRANSFORMER_BASED = "distilbert-base-uncased" MODEL_ONNX_FNAME = "ESG_classifier.onnx" MODEL_SENTIMENT_ANALYSIS = "ProsusAI/finbert" MODEL_SUMMARY_PEGASUS = "oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6" #API_HF_SENTIMENT_URL = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment" def _inference_ner_spancat(text, summary, penalty=0.5, normalise=True, limit_outputs=10): nlp = spacy.load("en_pipeline") doc = nlp(text) spans = doc.spans["sc"] comp_raw_text = dict( sorted( dict(zip([str(x) for x in spans],[float(x)*penalty for x in spans.attrs['scores']])).items(), key=lambda x: x[1], reverse=True) ) doc = nlp(summary) spans = doc.spans["sc"] exceeds_one = 0.0 for comp_s in spans: if str(comp_s) in comp_raw_text.keys(): comp_raw_text[str(comp_s)] = comp_raw_text[str(comp_s)] / penalty temp_max = comp_raw_text[str(comp_s)]if comp_raw_text[str(comp_s)] > 1.0 else 0.0 exceeds_one = comp_raw_text[str(comp_s)] if temp_max > exceeds_one else exceeds_one #This "exceeds_one" is a bit confusing. So the thing is that the penalty is reverted for each time the company appears in the summary and hence the value can exceed one when the company appears more than once. The normalisation means that all the other scores are divided by the maximum when any value exceeds one if normalise and (exceeds_one > 1): comp_raw_text = {k: v/exceeds_one for k, v in comp_raw_text.items()} return dict(itertools.islice(sorted(comp_raw_text.items(), key=lambda x: x[1], reverse=True), limit_outputs)) def _inference_summary_model_pipeline(text): pipe = pipeline("text2text-generation", model=MODEL_SUMMARY_PEGASUS) return pipe(text,truncation='longest_first') def _inference_sentiment_model_pipeline(text): tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}#,'return_tensors':'pt'} pipe = pipeline("sentiment-analysis", model=MODEL_SENTIMENT_ANALYSIS ) return pipe(text,**tokenizer_kwargs) #def _inference_sentiment_model_via_api_query(payload): # response = requests.post(API_HF_SENTIMENT_URL , headers={"Authorization": os.environ['hf_api_token']}, json=payload) # return response.json() def _lematise_text(text): nlp = spacy.load("en_core_web_sm", disable=['ner']) text_out = [] for doc in nlp.pipe(text): #see https://spacy.io/models#design new_text = "" for token in doc: if (not token.is_punct and not token.is_stop and not token.like_url and not token.is_space and not token.like_email #and not token.like_num and not token.pos_ == "CONJ"): new_text = new_text + " " + token.lemma_ text_out.append( new_text ) return text_out def sigmoid(x): return 1 / (1 + np.exp(-x)) def to_numpy(tensor): return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() def is_in_archive(url): try: r = requests.get('http://archive.org/wayback/available?url='+url) archive = json.loads(r.text) if archive['archived_snapshots'] : archive['archived_snapshots']['closest'] return {'archived':archive['archived_snapshots']['closest']['available'], 'url':archive['archived_snapshots']['closest']['url'],'error':0} else: return {'archived':False, 'url':"", 'error':0} except: print(f"[E] Quering URL ({url}) from archive.org") return {'archived':False, 'url':"", 'error':-1} #def _inference_ner(text): # return labels def _inference_classifier(text): tokenizer = AutoTokenizer.from_pretrained(MODEL_TRANSFORMER_BASED) inputs = tokenizer(_lematise_text(text), return_tensors="np", padding="max_length", truncation=True) #this assumes head-only! ort_session = onnxruntime.InferenceSession(MODEL_ONNX_FNAME) onnx_model = onnx.load(MODEL_ONNX_FNAME) onnx.checker.check_model(onnx_model) # compute ONNX Runtime output prediction ort_outs = ort_session.run(None, input_feed=dict(inputs)) return sigmoid(ort_outs[0])[0] def inference(input_batch,isurl,use_archive,limit_companies=10): input_batch_content = [] if isurl: for url in input_batch: if use_archive: archive = is_in_archive(url) if archive['archived']: url = archive['url'] #Extract the data from url extracted = Extractor().extract(requests.get(url).text) input_batch_content.append(extracted['content']) else: input_batch_content = input_batch prob_outs = _inference_classifier(input_batch_content) #sentiment = _inference_sentiment_model_via_api_query({"inputs": extracted['content']}) #sentiment = _inference_sentiment_model_pipeline(input_batch_content )[0] #summary = _inference_summary_model_pipeline(input_batch_content )[0]['generated_text'] #ner_labels = _inference_ner_spancat(input_batch_content ,summary, penalty = 0.8, limit_outputs=limit_companies) return prob_outs #ner_labels, {'E':float(prob_outs[0]),"S":float(prob_outs[1]),"G":float(prob_outs[2])},{sentiment['label']:float(sentiment['score'])},"**Summary:**\n\n" + summary title = "ESG API Demo" description = """This is a demonstration of the full ESG pipeline backend where given a URL (english, news) the news contents are extracted, using extractnet, and fed to three models: - An off-the-shelf sentiment classification model (ProsusAI/finbert) - A custom NER for the company extraction - A custom ESG classifier for the ESG labeling of the news (the extracted text is also lemmatised prior to be fed to this classifier) API input parameters: - URL: text. Url of the news (english) - `use_archive`: boolean. The model will extract the archived version in archive.org of the url indicated. This is useful with old news and to bypass news behind paywall - `limit_companies`: integer. Number of found relevant companies to report. """ #examples = [['https://www.bbc.com/news/uk-62732447',False,5], # ['https://www.bbc.com/news/business-62747401',False,5], # ['https://www.bbc.com/news/technology-62744858',False,5], # ['https://www.bbc.com/news/science-environment-62758811',False,5], # ['https://www.theguardian.com/business/2022/sep/02/nord-stream-1-gazprom-announces-indefinite-shutdown-of-pipeline',False,5], # ['https://www.bbc.com/news/world-europe-62766867',False,5], # ['https://www.bbc.com/news/business-62524031',False,5], # ['https://www.bbc.com/news/business-62728621',False,5], # ['https://www.bbc.com/news/science-environment-62680423',False,5]] demo = gr.Interface(fn=inference, inputs=[gr.Dataframe(label='input batch', col_count=1, datatype='str', type='array', wrap=True), gr.Dropdown(label='data type', choices=['text','url'], type='index'), gr.Checkbox(label='if url parse cached in archive.org'), gr.Slider(minimum=1, maximum=10, step=1, label='Limit NER output')], outputs=[gr.Dataframe(label='output raw', col_count=1, datatype='number', type='array', wrap=True)], #gr.Label(label='Company'), #gr.Label(label='ESG'), #gr.Label(label='Sentiment'), #gr.Markdown()], title=title, description=description)#, examples=examples) demo.launch()