# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os from contextlib import nullcontext from pathlib import Path from typing import Callable, Dict, List, Optional, Union import safetensors import torch from huggingface_hub import model_info from huggingface_hub.constants import HF_HUB_OFFLINE from huggingface_hub.utils import validate_hf_hub_args from packaging import version from torch import nn from .. import __version__ from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta from ..utils import ( USE_PEFT_BACKEND, _get_model_file, convert_state_dict_to_diffusers, convert_state_dict_to_peft, convert_unet_state_dict_to_peft, delete_adapter_layers, deprecate, get_adapter_name, get_peft_kwargs, is_accelerate_available, is_transformers_available, logging, recurse_remove_peft_layers, scale_lora_layers, set_adapter_layers, set_weights_and_activate_adapters, ) from .lora_conversion_utils import _convert_kohya_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers if is_transformers_available(): from transformers import PreTrainedModel from ..models.lora import PatchedLoraProjection, text_encoder_attn_modules, text_encoder_mlp_modules if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module logger = logging.get_logger(__name__) TEXT_ENCODER_NAME = "text_encoder" UNET_NAME = "unet" TRANSFORMER_NAME = "transformer" LORA_WEIGHT_NAME = "pytorch_lora_weights.bin" LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors" LORA_DEPRECATION_MESSAGE = "You are using an old version of LoRA backend. This will be deprecated in the next releases in favor of PEFT make sure to install the latest PEFT and transformers packages in the future." class LoraLoaderMixin: r""" Load LoRA layers into [`UNet2DConditionModel`] and [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). """ text_encoder_name = TEXT_ENCODER_NAME unet_name = UNET_NAME transformer_name = TRANSFORMER_NAME num_fused_loras = 0 def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into `self.unet`. See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded into `self.text_encoder`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.LoraLoaderMixin.lora_state_dict`]. kwargs (`dict`, *optional*): See [`~loaders.LoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. """ # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) self.load_lora_into_unet( state_dict, network_alphas=network_alphas, unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet, low_cpu_mem_usage=low_cpu_mem_usage, adapter_name=adapter_name, _pipeline=self, ) self.load_lora_into_text_encoder( state_dict, network_alphas=network_alphas, text_encoder=getattr(self, self.text_encoder_name) if not hasattr(self, "text_encoder") else self.text_encoder, lora_scale=self.lora_scale, low_cpu_mem_usage=low_cpu_mem_usage, adapter_name=adapter_name, _pipeline=self, ) @classmethod @validate_hf_hub_args def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to resume downloading the model weights and configuration files. If set to `False`, any incompletely downloaded files are deleted. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading only loading the pretrained weights and not initializing the weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this argument to `True` will raise an error. mirror (`str`, *optional*): Mirror source to resolve accessibility issues if you're downloading a model in China. We do not guarantee the timeliness or safety of the source, and you should refer to the mirror site for more information. """ # Load the main state dict first which has the LoRA layers for either of # UNet and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) unet_config = kwargs.pop("unet_config", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } model_file = None if not isinstance(pretrained_model_name_or_path_or_dict, dict): # Let's first try to load .safetensors weights if (use_safetensors and weight_name is None) or ( weight_name is not None and weight_name.endswith(".safetensors") ): try: # Here we're relaxing the loading check to enable more Inference API # friendliness where sometimes, it's not at all possible to automatically # determine `weight_name`. if weight_name is None: weight_name = cls._best_guess_weight_name( pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=local_files_only, ) model_file = _get_model_file( pretrained_model_name_or_path_or_dict, weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, ) state_dict = safetensors.torch.load_file(model_file, device="cpu") except (IOError, safetensors.SafetensorError) as e: if not allow_pickle: raise e # try loading non-safetensors weights model_file = None pass if model_file is None: if weight_name is None: weight_name = cls._best_guess_weight_name( pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only ) model_file = _get_model_file( pretrained_model_name_or_path_or_dict, weights_name=weight_name or LORA_WEIGHT_NAME, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, ) state_dict = torch.load(model_file, map_location="cpu") else: state_dict = pretrained_model_name_or_path_or_dict network_alphas = None # TODO: replace it with a method from `state_dict_utils` if all( ( k.startswith("lora_te_") or k.startswith("lora_unet_") or k.startswith("lora_te1_") or k.startswith("lora_te2_") ) for k in state_dict.keys() ): # Map SDXL blocks correctly. if unet_config is not None: # use unet config to remap block numbers state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict) return state_dict, network_alphas @classmethod def _best_guess_weight_name( cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False ): if local_files_only or HF_HUB_OFFLINE: raise ValueError("When using the offline mode, you must specify a `weight_name`.") targeted_files = [] if os.path.isfile(pretrained_model_name_or_path_or_dict): return elif os.path.isdir(pretrained_model_name_or_path_or_dict): targeted_files = [ f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension) ] else: files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)] if len(targeted_files) == 0: return # "scheduler" does not correspond to a LoRA checkpoint. # "optimizer" does not correspond to a LoRA checkpoint # only top-level checkpoints are considered and not the other ones, hence "checkpoint". unallowed_substrings = {"scheduler", "optimizer", "checkpoint"} targeted_files = list( filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files) ) if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files): targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files)) elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files): targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files)) if len(targeted_files) > 1: raise ValueError( f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}." ) weight_name = targeted_files[0] return weight_name @classmethod def _optionally_disable_offloading(cls, _pipeline): """ Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU. Args: _pipeline (`DiffusionPipeline`): The pipeline to disable offloading for. Returns: tuple: A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True. """ is_model_cpu_offload = False is_sequential_cpu_offload = False if _pipeline is not None: for _, component in _pipeline.components.items(): if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"): if not is_model_cpu_offload: is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) if not is_sequential_cpu_offload: is_sequential_cpu_offload = isinstance(component._hf_hook, AlignDevicesHook) logger.info( "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." ) remove_hook_from_module(component, recurse=is_sequential_cpu_offload) return (is_model_cpu_offload, is_sequential_cpu_offload) @classmethod def load_lora_into_unet( cls, state_dict, network_alphas, unet, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None ): """ This will load the LoRA layers specified in `state_dict` into `unet`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. network_alphas (`Dict[str, float]`): See `LoRALinearLayer` for more details. unet (`UNet2DConditionModel`): The UNet model to load the LoRA layers into. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading only loading the pretrained weights and not initializing the weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this argument to `True` will raise an error. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. """ low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as # their prefixes. keys = list(state_dict.keys()) if all(key.startswith("unet.unet") for key in keys): deprecation_message = "Keys starting with 'unet.unet' are deprecated." deprecate("unet.unet keys", "0.27", deprecation_message) if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys): # Load the layers corresponding to UNet. logger.info(f"Loading {cls.unet_name}.") unet_keys = [k for k in keys if k.startswith(cls.unet_name)] state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys} if network_alphas is not None: alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)] network_alphas = { k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys } else: # Otherwise, we're dealing with the old format. This means the `state_dict` should only # contain the module names of the `unet` as its keys WITHOUT any prefix. if not USE_PEFT_BACKEND: warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`." logger.warn(warn_message) if USE_PEFT_BACKEND and len(state_dict.keys()) > 0: from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict if adapter_name in getattr(unet, "peft_config", {}): raise ValueError( f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name." ) state_dict = convert_unet_state_dict_to_peft(state_dict) if network_alphas is not None: # The alphas state dict have the same structure as Unet, thus we convert it to peft format using # `convert_unet_state_dict_to_peft` method. network_alphas = convert_unet_state_dict_to_peft(network_alphas) rank = {} for key, val in state_dict.items(): if "lora_B" in key: rank[key] = val.shape[1] lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True) lora_config = LoraConfig(**lora_config_kwargs) # adapter_name if adapter_name is None: adapter_name = get_adapter_name(unet) # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks # otherwise loading LoRA weights will lead to an error is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) inject_adapter_in_model(lora_config, unet, adapter_name=adapter_name) incompatible_keys = set_peft_model_state_dict(unet, state_dict, adapter_name) if incompatible_keys is not None: # check only for unexpected keys unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) if unexpected_keys: logger.warning( f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " f" {unexpected_keys}. " ) # Offload back. if is_model_cpu_offload: _pipeline.enable_model_cpu_offload() elif is_sequential_cpu_offload: _pipeline.enable_sequential_cpu_offload() # Unsafe code /> unet.load_attn_procs( state_dict, network_alphas=network_alphas, low_cpu_mem_usage=low_cpu_mem_usage, _pipeline=_pipeline ) @classmethod def load_lora_into_text_encoder( cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None, ): """ This will load the LoRA layers specified in `state_dict` into `text_encoder` Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The key should be prefixed with an additional `text_encoder` to distinguish between unet lora layers. network_alphas (`Dict[str, float]`): See `LoRALinearLayer` for more details. text_encoder (`CLIPTextModel`): The text encoder model to load the LoRA layers into. prefix (`str`): Expected prefix of the `text_encoder` in the `state_dict`. lora_scale (`float`): How much to scale the output of the lora linear layer before it is added with the output of the regular lora layer. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading only loading the pretrained weights and not initializing the weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this argument to `True` will raise an error. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. """ low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as # their prefixes. keys = list(state_dict.keys()) prefix = cls.text_encoder_name if prefix is None else prefix # Safe prefix to check with. if any(cls.text_encoder_name in key for key in keys): # Load the layers corresponding to text encoder and make necessary adjustments. text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix] text_encoder_lora_state_dict = { k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys } if len(text_encoder_lora_state_dict) > 0: logger.info(f"Loading {prefix}.") rank = {} text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) if USE_PEFT_BACKEND: # convert state dict text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) for name, _ in text_encoder_attn_modules(text_encoder): rank_key = f"{name}.out_proj.lora_B.weight" rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys()) if patch_mlp: for name, _ in text_encoder_mlp_modules(text_encoder): rank_key_fc1 = f"{name}.fc1.lora_B.weight" rank_key_fc2 = f"{name}.fc2.lora_B.weight" rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1] rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1] else: for name, _ in text_encoder_attn_modules(text_encoder): rank_key = f"{name}.out_proj.lora_linear_layer.up.weight" rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]}) patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys()) if patch_mlp: for name, _ in text_encoder_mlp_modules(text_encoder): rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight" rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight" rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1] rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1] if network_alphas is not None: alpha_keys = [ k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix ] network_alphas = { k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys } if USE_PEFT_BACKEND: from peft import LoraConfig lora_config_kwargs = get_peft_kwargs( rank, network_alphas, text_encoder_lora_state_dict, is_unet=False ) lora_config = LoraConfig(**lora_config_kwargs) # adapter_name if adapter_name is None: adapter_name = get_adapter_name(text_encoder) is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) # inject LoRA layers and load the state dict # in transformers we automatically check whether the adapter name is already in use or not text_encoder.load_adapter( adapter_name=adapter_name, adapter_state_dict=text_encoder_lora_state_dict, peft_config=lora_config, ) # scale LoRA layers with `lora_scale` scale_lora_layers(text_encoder, weight=lora_scale) else: cls._modify_text_encoder( text_encoder, lora_scale, network_alphas, rank=rank, patch_mlp=patch_mlp, low_cpu_mem_usage=low_cpu_mem_usage, ) is_pipeline_offloaded = _pipeline is not None and any( isinstance(c, torch.nn.Module) and hasattr(c, "_hf_hook") for c in _pipeline.components.values() ) if is_pipeline_offloaded and low_cpu_mem_usage: low_cpu_mem_usage = True logger.info( f"Pipeline {_pipeline.__class__} is offloaded. Therefore low cpu mem usage loading is forced." ) if low_cpu_mem_usage: device = next(iter(text_encoder_lora_state_dict.values())).device dtype = next(iter(text_encoder_lora_state_dict.values())).dtype unexpected_keys = load_model_dict_into_meta( text_encoder, text_encoder_lora_state_dict, device=device, dtype=dtype ) else: load_state_dict_results = text_encoder.load_state_dict( text_encoder_lora_state_dict, strict=False ) unexpected_keys = load_state_dict_results.unexpected_keys if len(unexpected_keys) != 0: raise ValueError( f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}" ) # @classmethod def load_lora_into_transformer( cls, state_dict, network_alphas, transformer, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None ): """ This will load the LoRA layers specified in `state_dict` into `transformer`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. network_alphas (`Dict[str, float]`): See `LoRALinearLayer` for more details. unet (`UNet2DConditionModel`): The UNet model to load the LoRA layers into. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading only loading the pretrained weights and not initializing the weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this argument to `True` will raise an error. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. """ low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT keys = list(state_dict.keys()) transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] state_dict = { k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys } if network_alphas is not None: alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.transformer_name)] network_alphas = { k.replace(f"{cls.transformer_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys } if len(state_dict.keys()) > 0: from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict if adapter_name in getattr(transformer, "peft_config", {}): raise ValueError( f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." ) rank = {} for key, val in state_dict.items(): if "lora_B" in key: rank[key] = val.shape[1] lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict) lora_config = LoraConfig(**lora_config_kwargs) # adapter_name if adapter_name is None: adapter_name = get_adapter_name(transformer) # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks # otherwise loading LoRA weights will lead to an error is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) if incompatible_keys is not None: # check only for unexpected keys unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) if unexpected_keys: logger.warning( f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " f" {unexpected_keys}. " ) # Offload back. if is_model_cpu_offload: _pipeline.enable_model_cpu_offload() elif is_sequential_cpu_offload: _pipeline.enable_sequential_cpu_offload() # Unsafe code /> @property def lora_scale(self) -> float: # property function that returns the lora scale which can be set at run time by the pipeline. # if _lora_scale has not been set, return 1 return self._lora_scale if hasattr(self, "_lora_scale") else 1.0 def _remove_text_encoder_monkey_patch(self): if USE_PEFT_BACKEND: remove_method = recurse_remove_peft_layers else: remove_method = self._remove_text_encoder_monkey_patch_classmethod if hasattr(self, "text_encoder"): remove_method(self.text_encoder) # In case text encoder have no Lora attached if USE_PEFT_BACKEND and getattr(self.text_encoder, "peft_config", None) is not None: del self.text_encoder.peft_config self.text_encoder._hf_peft_config_loaded = None if hasattr(self, "text_encoder_2"): remove_method(self.text_encoder_2) if USE_PEFT_BACKEND: del self.text_encoder_2.peft_config self.text_encoder_2._hf_peft_config_loaded = None @classmethod def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder): deprecate("_remove_text_encoder_monkey_patch_classmethod", "0.27", LORA_DEPRECATION_MESSAGE) for _, attn_module in text_encoder_attn_modules(text_encoder): if isinstance(attn_module.q_proj, PatchedLoraProjection): attn_module.q_proj.lora_linear_layer = None attn_module.k_proj.lora_linear_layer = None attn_module.v_proj.lora_linear_layer = None attn_module.out_proj.lora_linear_layer = None for _, mlp_module in text_encoder_mlp_modules(text_encoder): if isinstance(mlp_module.fc1, PatchedLoraProjection): mlp_module.fc1.lora_linear_layer = None mlp_module.fc2.lora_linear_layer = None @classmethod def _modify_text_encoder( cls, text_encoder, lora_scale=1, network_alphas=None, rank: Union[Dict[str, int], int] = 4, dtype=None, patch_mlp=False, low_cpu_mem_usage=False, ): r""" Monkey-patches the forward passes of attention modules of the text encoder. """ deprecate("_modify_text_encoder", "0.27", LORA_DEPRECATION_MESSAGE) def create_patched_linear_lora(model, network_alpha, rank, dtype, lora_parameters): linear_layer = model.regular_linear_layer if isinstance(model, PatchedLoraProjection) else model ctx = init_empty_weights if low_cpu_mem_usage else nullcontext with ctx(): model = PatchedLoraProjection(linear_layer, lora_scale, network_alpha, rank, dtype=dtype) lora_parameters.extend(model.lora_linear_layer.parameters()) return model # First, remove any monkey-patch that might have been applied before cls._remove_text_encoder_monkey_patch_classmethod(text_encoder) lora_parameters = [] network_alphas = {} if network_alphas is None else network_alphas is_network_alphas_populated = len(network_alphas) > 0 for name, attn_module in text_encoder_attn_modules(text_encoder): query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None) key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None) value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None) out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None) if isinstance(rank, dict): current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight") else: current_rank = rank attn_module.q_proj = create_patched_linear_lora( attn_module.q_proj, query_alpha, current_rank, dtype, lora_parameters ) attn_module.k_proj = create_patched_linear_lora( attn_module.k_proj, key_alpha, current_rank, dtype, lora_parameters ) attn_module.v_proj = create_patched_linear_lora( attn_module.v_proj, value_alpha, current_rank, dtype, lora_parameters ) attn_module.out_proj = create_patched_linear_lora( attn_module.out_proj, out_alpha, current_rank, dtype, lora_parameters ) if patch_mlp: for name, mlp_module in text_encoder_mlp_modules(text_encoder): fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None) fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None) current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight") current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight") mlp_module.fc1 = create_patched_linear_lora( mlp_module.fc1, fc1_alpha, current_rank_fc1, dtype, lora_parameters ) mlp_module.fc2 = create_patched_linear_lora( mlp_module.fc2, fc2_alpha, current_rank_fc2, dtype, lora_parameters ) if is_network_alphas_populated and len(network_alphas) > 0: raise ValueError( f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}" ) return lora_parameters @classmethod def save_lora_weights( cls, save_directory: Union[str, os.PathLike], unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, transformer_lora_layers: Dict[str, torch.nn.Module] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `unet`. text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} def pack_weights(layers, prefix): layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} return layers_state_dict if not (unet_lora_layers or text_encoder_lora_layers or transformer_lora_layers): raise ValueError( "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, or `transformer_lora_layers`." ) if unet_lora_layers: state_dict.update(pack_weights(unet_lora_layers, cls.unet_name)) if text_encoder_lora_layers: state_dict.update(pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) if transformer_lora_layers: state_dict.update(pack_weights(transformer_lora_layers, "transformer")) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) @staticmethod def write_lora_layers( state_dict: Dict[str, torch.Tensor], save_directory: str, is_main_process: bool, weight_name: str, save_function: Callable, safe_serialization: bool, ): if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return if save_function is None: if safe_serialization: def save_function(weights, filename): return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) else: save_function = torch.save os.makedirs(save_directory, exist_ok=True) if weight_name is None: if safe_serialization: weight_name = LORA_WEIGHT_NAME_SAFE else: weight_name = LORA_WEIGHT_NAME save_path = Path(save_directory, weight_name).as_posix() save_function(state_dict, save_path) logger.info(f"Model weights saved in {save_path}") def unload_lora_weights(self): """ Unloads the LoRA parameters. Examples: ```python >>> # Assuming `pipeline` is already loaded with the LoRA parameters. >>> pipeline.unload_lora_weights() >>> ... ``` """ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet if not USE_PEFT_BACKEND: if version.parse(__version__) > version.parse("0.23"): logger.warning( "You are using `unload_lora_weights` to disable and unload lora weights. If you want to iteratively enable and disable adapter weights," "you can use `pipe.enable_lora()` or `pipe.disable_lora()`. After installing the latest version of PEFT." ) for _, module in unet.named_modules(): if hasattr(module, "set_lora_layer"): module.set_lora_layer(None) else: recurse_remove_peft_layers(unet) if hasattr(unet, "peft_config"): del unet.peft_config # Safe to call the following regardless of LoRA. self._remove_text_encoder_monkey_patch() def fuse_lora( self, fuse_unet: bool = True, fuse_text_encoder: bool = True, lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters. fuse_text_encoder (`bool`, defaults to `True`): Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the LoRA parameters then it won't have any effect. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ if fuse_unet or fuse_text_encoder: self.num_fused_loras += 1 if self.num_fused_loras > 1: logger.warn( "The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.", ) if fuse_unet: unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet unet.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) if USE_PEFT_BACKEND: from peft.tuners.tuners_utils import BaseTunerLayer def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None): merge_kwargs = {"safe_merge": safe_fusing} for module in text_encoder.modules(): if isinstance(module, BaseTunerLayer): if lora_scale != 1.0: module.scale_layer(lora_scale) # For BC with previous PEFT versions, we need to check the signature # of the `merge` method to see if it supports the `adapter_names` argument. supported_merge_kwargs = list(inspect.signature(module.merge).parameters) if "adapter_names" in supported_merge_kwargs: merge_kwargs["adapter_names"] = adapter_names elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None: raise ValueError( "The `adapter_names` argument is not supported with your PEFT version. " "Please upgrade to the latest version of PEFT. `pip install -U peft`" ) module.merge(**merge_kwargs) else: deprecate("fuse_text_encoder_lora", "0.27", LORA_DEPRECATION_MESSAGE) def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, **kwargs): if "adapter_names" in kwargs and kwargs["adapter_names"] is not None: raise ValueError( "The `adapter_names` argument is not supported in your environment. Please switch to PEFT " "backend to use this argument by installing latest PEFT and transformers." " `pip install -U peft transformers`" ) for _, attn_module in text_encoder_attn_modules(text_encoder): if isinstance(attn_module.q_proj, PatchedLoraProjection): attn_module.q_proj._fuse_lora(lora_scale, safe_fusing) attn_module.k_proj._fuse_lora(lora_scale, safe_fusing) attn_module.v_proj._fuse_lora(lora_scale, safe_fusing) attn_module.out_proj._fuse_lora(lora_scale, safe_fusing) for _, mlp_module in text_encoder_mlp_modules(text_encoder): if isinstance(mlp_module.fc1, PatchedLoraProjection): mlp_module.fc1._fuse_lora(lora_scale, safe_fusing) mlp_module.fc2._fuse_lora(lora_scale, safe_fusing) if fuse_text_encoder: if hasattr(self, "text_encoder"): fuse_text_encoder_lora(self.text_encoder, lora_scale, safe_fusing, adapter_names=adapter_names) if hasattr(self, "text_encoder_2"): fuse_text_encoder_lora(self.text_encoder_2, lora_scale, safe_fusing, adapter_names=adapter_names) def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora). This is an experimental API. Args: unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. unfuse_text_encoder (`bool`, defaults to `True`): Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the LoRA parameters then it won't have any effect. """ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet if unfuse_unet: if not USE_PEFT_BACKEND: unet.unfuse_lora() else: from peft.tuners.tuners_utils import BaseTunerLayer for module in unet.modules(): if isinstance(module, BaseTunerLayer): module.unmerge() if USE_PEFT_BACKEND: from peft.tuners.tuners_utils import BaseTunerLayer def unfuse_text_encoder_lora(text_encoder): for module in text_encoder.modules(): if isinstance(module, BaseTunerLayer): module.unmerge() else: deprecate("unfuse_text_encoder_lora", "0.27", LORA_DEPRECATION_MESSAGE) def unfuse_text_encoder_lora(text_encoder): for _, attn_module in text_encoder_attn_modules(text_encoder): if isinstance(attn_module.q_proj, PatchedLoraProjection): attn_module.q_proj._unfuse_lora() attn_module.k_proj._unfuse_lora() attn_module.v_proj._unfuse_lora() attn_module.out_proj._unfuse_lora() for _, mlp_module in text_encoder_mlp_modules(text_encoder): if isinstance(mlp_module.fc1, PatchedLoraProjection): mlp_module.fc1._unfuse_lora() mlp_module.fc2._unfuse_lora() if unfuse_text_encoder: if hasattr(self, "text_encoder"): unfuse_text_encoder_lora(self.text_encoder) if hasattr(self, "text_encoder_2"): unfuse_text_encoder_lora(self.text_encoder_2) self.num_fused_loras -= 1 def set_adapters_for_text_encoder( self, adapter_names: Union[List[str], str], text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821 text_encoder_weights: List[float] = None, ): """ Sets the adapter layers for the text encoder. Args: adapter_names (`List[str]` or `str`): The names of the adapters to use. text_encoder (`torch.nn.Module`, *optional*): The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder` attribute. text_encoder_weights (`List[float]`, *optional*): The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") def process_weights(adapter_names, weights): if weights is None: weights = [1.0] * len(adapter_names) elif isinstance(weights, float): weights = [weights] if len(adapter_names) != len(weights): raise ValueError( f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}" ) return weights adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names text_encoder_weights = process_weights(adapter_names, text_encoder_weights) text_encoder = text_encoder or getattr(self, "text_encoder", None) if text_encoder is None: raise ValueError( "The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead." ) set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights) def disable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None): """ Disables the LoRA layers for the text encoder. Args: text_encoder (`torch.nn.Module`, *optional*): The text encoder module to disable the LoRA layers for. If `None`, it will try to get the `text_encoder` attribute. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") text_encoder = text_encoder or getattr(self, "text_encoder", None) if text_encoder is None: raise ValueError("Text Encoder not found.") set_adapter_layers(text_encoder, enabled=False) def enable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None): """ Enables the LoRA layers for the text encoder. Args: text_encoder (`torch.nn.Module`, *optional*): The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder` attribute. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") text_encoder = text_encoder or getattr(self, "text_encoder", None) if text_encoder is None: raise ValueError("Text Encoder not found.") set_adapter_layers(self.text_encoder, enabled=True) def set_adapters( self, adapter_names: Union[List[str], str], adapter_weights: Optional[List[float]] = None, ): unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet # Handle the UNET unet.set_adapters(adapter_names, adapter_weights) # Handle the Text Encoder if hasattr(self, "text_encoder"): self.set_adapters_for_text_encoder(adapter_names, self.text_encoder, adapter_weights) if hasattr(self, "text_encoder_2"): self.set_adapters_for_text_encoder(adapter_names, self.text_encoder_2, adapter_weights) def disable_lora(self): if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") # Disable unet adapters unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet unet.disable_lora() # Disable text encoder adapters if hasattr(self, "text_encoder"): self.disable_lora_for_text_encoder(self.text_encoder) if hasattr(self, "text_encoder_2"): self.disable_lora_for_text_encoder(self.text_encoder_2) def enable_lora(self): if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") # Enable unet adapters unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet unet.enable_lora() # Enable text encoder adapters if hasattr(self, "text_encoder"): self.enable_lora_for_text_encoder(self.text_encoder) if hasattr(self, "text_encoder_2"): self.enable_lora_for_text_encoder(self.text_encoder_2) def delete_adapters(self, adapter_names: Union[List[str], str]): """ Args: Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s). adapter_names (`Union[List[str], str]`): The names of the adapter to delete. Can be a single string or a list of strings """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") if isinstance(adapter_names, str): adapter_names = [adapter_names] # Delete unet adapters unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet unet.delete_adapters(adapter_names) for adapter_name in adapter_names: # Delete text encoder adapters if hasattr(self, "text_encoder"): delete_adapter_layers(self.text_encoder, adapter_name) if hasattr(self, "text_encoder_2"): delete_adapter_layers(self.text_encoder_2, adapter_name) def get_active_adapters(self) -> List[str]: """ Gets the list of the current active adapters. Example: ```python from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", ).to("cuda") pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy") pipeline.get_active_adapters() ``` """ if not USE_PEFT_BACKEND: raise ValueError( "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" ) from peft.tuners.tuners_utils import BaseTunerLayer active_adapters = [] unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet for module in unet.modules(): if isinstance(module, BaseTunerLayer): active_adapters = module.active_adapters break return active_adapters def get_list_adapters(self) -> Dict[str, List[str]]: """ Gets the current list of all available adapters in the pipeline. """ if not USE_PEFT_BACKEND: raise ValueError( "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" ) set_adapters = {} if hasattr(self, "text_encoder") and hasattr(self.text_encoder, "peft_config"): set_adapters["text_encoder"] = list(self.text_encoder.peft_config.keys()) if hasattr(self, "text_encoder_2") and hasattr(self.text_encoder_2, "peft_config"): set_adapters["text_encoder_2"] = list(self.text_encoder_2.peft_config.keys()) unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet if hasattr(self, self.unet_name) and hasattr(unet, "peft_config"): set_adapters[self.unet_name] = list(self.unet.peft_config.keys()) return set_adapters def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None: """ Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case you want to load multiple adapters and free some GPU memory. Args: adapter_names (`List[str]`): List of adapters to send device to. device (`Union[torch.device, str, int]`): Device to send the adapters to. Can be either a torch device, a str or an integer. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") from peft.tuners.tuners_utils import BaseTunerLayer # Handle the UNET unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet for unet_module in unet.modules(): if isinstance(unet_module, BaseTunerLayer): for adapter_name in adapter_names: unet_module.lora_A[adapter_name].to(device) unet_module.lora_B[adapter_name].to(device) # Handle the text encoder modules_to_process = [] if hasattr(self, "text_encoder"): modules_to_process.append(self.text_encoder) if hasattr(self, "text_encoder_2"): modules_to_process.append(self.text_encoder_2) for text_encoder in modules_to_process: # loop over submodules for text_encoder_module in text_encoder.modules(): if isinstance(text_encoder_module, BaseTunerLayer): for adapter_name in adapter_names: text_encoder_module.lora_A[adapter_name].to(device) text_encoder_module.lora_B[adapter_name].to(device) class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin): """This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL""" # Overrride to properly handle the loading and unloading of the additional text encoder. def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name: Optional[str] = None, **kwargs, ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into `self.unet`. See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded into `self.text_encoder`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.LoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. kwargs (`dict`, *optional*): See [`~loaders.LoraLoaderMixin.lora_state_dict`]. """ # We could have accessed the unet config from `lora_state_dict()` too. We pass # it here explicitly to be able to tell that it's coming from an SDXL # pipeline. # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict, network_alphas = self.lora_state_dict( pretrained_model_name_or_path_or_dict, unet_config=self.unet.config, **kwargs, ) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") self.load_lora_into_unet( state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self ) text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} if len(text_encoder_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder, prefix="text_encoder", lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, ) text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} if len(text_encoder_2_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder_2, prefix="text_encoder_2", lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, ) @classmethod def save_lora_weights( cls, save_directory: Union[str, os.PathLike], unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `unet`. text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} def pack_weights(layers, prefix): layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} return layers_state_dict if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): raise ValueError( "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." ) if unet_lora_layers: state_dict.update(pack_weights(unet_lora_layers, "unet")) if text_encoder_lora_layers and text_encoder_2_lora_layers: state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def _remove_text_encoder_monkey_patch(self): if USE_PEFT_BACKEND: recurse_remove_peft_layers(self.text_encoder) # TODO: @younesbelkada handle this in transformers side if getattr(self.text_encoder, "peft_config", None) is not None: del self.text_encoder.peft_config self.text_encoder._hf_peft_config_loaded = None recurse_remove_peft_layers(self.text_encoder_2) if getattr(self.text_encoder_2, "peft_config", None) is not None: del self.text_encoder_2.peft_config self.text_encoder_2._hf_peft_config_loaded = None else: self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)