Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from torch import nn | |
from transformers import CLIPPreTrainedModel, CLIPVisionModel | |
from ...models.attention import BasicTransformerBlock | |
from ...utils import logging | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class PaintByExampleImageEncoder(CLIPPreTrainedModel): | |
def __init__(self, config, proj_size=None): | |
super().__init__(config) | |
self.proj_size = proj_size or getattr(config, "projection_dim", 768) | |
self.model = CLIPVisionModel(config) | |
self.mapper = PaintByExampleMapper(config) | |
self.final_layer_norm = nn.LayerNorm(config.hidden_size) | |
self.proj_out = nn.Linear(config.hidden_size, self.proj_size) | |
# uncondition for scaling | |
self.uncond_vector = nn.Parameter(torch.randn((1, 1, self.proj_size))) | |
def forward(self, pixel_values, return_uncond_vector=False): | |
clip_output = self.model(pixel_values=pixel_values) | |
latent_states = clip_output.pooler_output | |
latent_states = self.mapper(latent_states[:, None]) | |
latent_states = self.final_layer_norm(latent_states) | |
latent_states = self.proj_out(latent_states) | |
if return_uncond_vector: | |
return latent_states, self.uncond_vector | |
return latent_states | |
class PaintByExampleMapper(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
num_layers = (config.num_hidden_layers + 1) // 5 | |
hid_size = config.hidden_size | |
num_heads = 1 | |
self.blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock(hid_size, num_heads, hid_size, activation_fn="gelu", attention_bias=True) | |
for _ in range(num_layers) | |
] | |
) | |
def forward(self, hidden_states): | |
for block in self.blocks: | |
hidden_states = block(hidden_states) | |
return hidden_states | |