Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Callable, Dict, List, Optional, Union | |
import PIL.Image | |
import torch | |
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection | |
from ...models import PriorTransformer, UNet2DConditionModel, VQModel | |
from ...schedulers import DDPMScheduler, UnCLIPScheduler | |
from ...utils import deprecate, logging, replace_example_docstring | |
from ..pipeline_utils import DiffusionPipeline | |
from .pipeline_kandinsky2_2 import KandinskyV22Pipeline | |
from .pipeline_kandinsky2_2_img2img import KandinskyV22Img2ImgPipeline | |
from .pipeline_kandinsky2_2_inpainting import KandinskyV22InpaintPipeline | |
from .pipeline_kandinsky2_2_prior import KandinskyV22PriorPipeline | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
TEXT2IMAGE_EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
from diffusers import AutoPipelineForText2Image | |
import torch | |
pipe = AutoPipelineForText2Image.from_pretrained( | |
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k" | |
image = pipe(prompt=prompt, num_inference_steps=25).images[0] | |
``` | |
""" | |
IMAGE2IMAGE_EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
from diffusers import AutoPipelineForImage2Image | |
import torch | |
import requests | |
from io import BytesIO | |
from PIL import Image | |
import os | |
pipe = AutoPipelineForImage2Image.from_pretrained( | |
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
prompt = "A fantasy landscape, Cinematic lighting" | |
negative_prompt = "low quality, bad quality" | |
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" | |
response = requests.get(url) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
image.thumbnail((768, 768)) | |
image = pipe(prompt=prompt, image=original_image, num_inference_steps=25).images[0] | |
``` | |
""" | |
INPAINT_EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
from diffusers import AutoPipelineForInpainting | |
from diffusers.utils import load_image | |
import torch | |
import numpy as np | |
pipe = AutoPipelineForInpainting.from_pretrained( | |
"kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
prompt = "A fantasy landscape, Cinematic lighting" | |
negative_prompt = "low quality, bad quality" | |
original_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" | |
) | |
mask = np.zeros((768, 768), dtype=np.float32) | |
# Let's mask out an area above the cat's head | |
mask[:250, 250:-250] = 1 | |
image = pipe(prompt=prompt, image=original_image, mask_image=mask, num_inference_steps=25).images[0] | |
``` | |
""" | |
class KandinskyV22CombinedPipeline(DiffusionPipeline): | |
""" | |
Combined Pipeline for text-to-image generation using Kandinsky | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): | |
A scheduler to be used in combination with `unet` to generate image latents. | |
unet ([`UNet2DConditionModel`]): | |
Conditional U-Net architecture to denoise the image embedding. | |
movq ([`VQModel`]): | |
MoVQ Decoder to generate the image from the latents. | |
prior_prior ([`PriorTransformer`]): | |
The canonincal unCLIP prior to approximate the image embedding from the text embedding. | |
prior_image_encoder ([`CLIPVisionModelWithProjection`]): | |
Frozen image-encoder. | |
prior_text_encoder ([`CLIPTextModelWithProjection`]): | |
Frozen text-encoder. | |
prior_tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
prior_scheduler ([`UnCLIPScheduler`]): | |
A scheduler to be used in combination with `prior` to generate image embedding. | |
prior_image_processor ([`CLIPImageProcessor`]): | |
A image_processor to be used to preprocess image from clip. | |
""" | |
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq" | |
_load_connected_pipes = True | |
def __init__( | |
self, | |
unet: UNet2DConditionModel, | |
scheduler: DDPMScheduler, | |
movq: VQModel, | |
prior_prior: PriorTransformer, | |
prior_image_encoder: CLIPVisionModelWithProjection, | |
prior_text_encoder: CLIPTextModelWithProjection, | |
prior_tokenizer: CLIPTokenizer, | |
prior_scheduler: UnCLIPScheduler, | |
prior_image_processor: CLIPImageProcessor, | |
): | |
super().__init__() | |
self.register_modules( | |
unet=unet, | |
scheduler=scheduler, | |
movq=movq, | |
prior_prior=prior_prior, | |
prior_image_encoder=prior_image_encoder, | |
prior_text_encoder=prior_text_encoder, | |
prior_tokenizer=prior_tokenizer, | |
prior_scheduler=prior_scheduler, | |
prior_image_processor=prior_image_processor, | |
) | |
self.prior_pipe = KandinskyV22PriorPipeline( | |
prior=prior_prior, | |
image_encoder=prior_image_encoder, | |
text_encoder=prior_text_encoder, | |
tokenizer=prior_tokenizer, | |
scheduler=prior_scheduler, | |
image_processor=prior_image_processor, | |
) | |
self.decoder_pipe = KandinskyV22Pipeline( | |
unet=unet, | |
scheduler=scheduler, | |
movq=movq, | |
) | |
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): | |
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
Note that offloading happens on a submodule basis. Memory savings are higher than with | |
`enable_model_cpu_offload`, but performance is lower. | |
""" | |
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
def progress_bar(self, iterable=None, total=None): | |
self.prior_pipe.progress_bar(iterable=iterable, total=total) | |
self.decoder_pipe.progress_bar(iterable=iterable, total=total) | |
self.decoder_pipe.enable_model_cpu_offload() | |
def set_progress_bar_config(self, **kwargs): | |
self.prior_pipe.set_progress_bar_config(**kwargs) | |
self.decoder_pipe.set_progress_bar_config(**kwargs) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_inference_steps: int = 100, | |
guidance_scale: float = 4.0, | |
num_images_per_prompt: int = 1, | |
height: int = 512, | |
width: int = 512, | |
prior_guidance_scale: float = 4.0, | |
prior_num_inference_steps: int = 25, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
return_dict: bool = True, | |
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
prior_guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
prior_num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
prior_callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference of the prior pipeline. | |
The function is called with the following arguments: `prior_callback_on_step_end(self: | |
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. | |
prior_callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the | |
list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in | |
the `._callback_tensor_inputs` attribute of your prior pipeline class. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference of the decoder pipeline. | |
The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, | |
step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors | |
as specified by `callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` | |
""" | |
prior_outputs = self.prior_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
num_inference_steps=prior_num_inference_steps, | |
generator=generator, | |
latents=latents, | |
guidance_scale=prior_guidance_scale, | |
output_type="pt", | |
return_dict=False, | |
callback_on_step_end=prior_callback_on_step_end, | |
callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, | |
) | |
image_embeds = prior_outputs[0] | |
negative_image_embeds = prior_outputs[1] | |
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt | |
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: | |
prompt = (image_embeds.shape[0] // len(prompt)) * prompt | |
outputs = self.decoder_pipe( | |
image_embeds=image_embeds, | |
negative_image_embeds=negative_image_embeds, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
output_type=output_type, | |
callback=callback, | |
callback_steps=callback_steps, | |
return_dict=return_dict, | |
callback_on_step_end=callback_on_step_end, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
) | |
self.maybe_free_model_hooks() | |
return outputs | |
class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline): | |
""" | |
Combined Pipeline for image-to-image generation using Kandinsky | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): | |
A scheduler to be used in combination with `unet` to generate image latents. | |
unet ([`UNet2DConditionModel`]): | |
Conditional U-Net architecture to denoise the image embedding. | |
movq ([`VQModel`]): | |
MoVQ Decoder to generate the image from the latents. | |
prior_prior ([`PriorTransformer`]): | |
The canonincal unCLIP prior to approximate the image embedding from the text embedding. | |
prior_image_encoder ([`CLIPVisionModelWithProjection`]): | |
Frozen image-encoder. | |
prior_text_encoder ([`CLIPTextModelWithProjection`]): | |
Frozen text-encoder. | |
prior_tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
prior_scheduler ([`UnCLIPScheduler`]): | |
A scheduler to be used in combination with `prior` to generate image embedding. | |
prior_image_processor ([`CLIPImageProcessor`]): | |
A image_processor to be used to preprocess image from clip. | |
""" | |
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq" | |
_load_connected_pipes = True | |
def __init__( | |
self, | |
unet: UNet2DConditionModel, | |
scheduler: DDPMScheduler, | |
movq: VQModel, | |
prior_prior: PriorTransformer, | |
prior_image_encoder: CLIPVisionModelWithProjection, | |
prior_text_encoder: CLIPTextModelWithProjection, | |
prior_tokenizer: CLIPTokenizer, | |
prior_scheduler: UnCLIPScheduler, | |
prior_image_processor: CLIPImageProcessor, | |
): | |
super().__init__() | |
self.register_modules( | |
unet=unet, | |
scheduler=scheduler, | |
movq=movq, | |
prior_prior=prior_prior, | |
prior_image_encoder=prior_image_encoder, | |
prior_text_encoder=prior_text_encoder, | |
prior_tokenizer=prior_tokenizer, | |
prior_scheduler=prior_scheduler, | |
prior_image_processor=prior_image_processor, | |
) | |
self.prior_pipe = KandinskyV22PriorPipeline( | |
prior=prior_prior, | |
image_encoder=prior_image_encoder, | |
text_encoder=prior_text_encoder, | |
tokenizer=prior_tokenizer, | |
scheduler=prior_scheduler, | |
image_processor=prior_image_processor, | |
) | |
self.decoder_pipe = KandinskyV22Img2ImgPipeline( | |
unet=unet, | |
scheduler=scheduler, | |
movq=movq, | |
) | |
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): | |
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
self.prior_pipe.enable_model_cpu_offload() | |
self.decoder_pipe.enable_model_cpu_offload() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
Note that offloading happens on a submodule basis. Memory savings are higher than with | |
`enable_model_cpu_offload`, but performance is lower. | |
""" | |
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
def progress_bar(self, iterable=None, total=None): | |
self.prior_pipe.progress_bar(iterable=iterable, total=total) | |
self.decoder_pipe.progress_bar(iterable=iterable, total=total) | |
self.decoder_pipe.enable_model_cpu_offload() | |
def set_progress_bar_config(self, **kwargs): | |
self.prior_pipe.set_progress_bar_config(**kwargs) | |
self.decoder_pipe.set_progress_bar_config(**kwargs) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_inference_steps: int = 100, | |
guidance_scale: float = 4.0, | |
strength: float = 0.3, | |
num_images_per_prompt: int = 1, | |
height: int = 512, | |
width: int = 512, | |
prior_guidance_scale: float = 4.0, | |
prior_num_inference_steps: int = 25, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
return_dict: bool = True, | |
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image`, or tensor representing an image batch, that will be used as the starting point for the | |
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded | |
again. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
strength (`float`, *optional*, defaults to 0.3): | |
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` | |
will be used as a starting point, adding more noise to it the larger the `strength`. The number of | |
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will | |
be maximum and the denoising process will run for the full number of iterations specified in | |
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
prior_guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
prior_num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` | |
""" | |
prior_outputs = self.prior_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
num_inference_steps=prior_num_inference_steps, | |
generator=generator, | |
latents=latents, | |
guidance_scale=prior_guidance_scale, | |
output_type="pt", | |
return_dict=False, | |
callback_on_step_end=prior_callback_on_step_end, | |
callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, | |
) | |
image_embeds = prior_outputs[0] | |
negative_image_embeds = prior_outputs[1] | |
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt | |
image = [image] if isinstance(prompt, PIL.Image.Image) else image | |
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: | |
prompt = (image_embeds.shape[0] // len(prompt)) * prompt | |
if ( | |
isinstance(image, (list, tuple)) | |
and len(image) < image_embeds.shape[0] | |
and image_embeds.shape[0] % len(image) == 0 | |
): | |
image = (image_embeds.shape[0] // len(image)) * image | |
outputs = self.decoder_pipe( | |
image=image, | |
image_embeds=image_embeds, | |
negative_image_embeds=negative_image_embeds, | |
width=width, | |
height=height, | |
strength=strength, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
output_type=output_type, | |
callback=callback, | |
callback_steps=callback_steps, | |
return_dict=return_dict, | |
callback_on_step_end=callback_on_step_end, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
) | |
self.maybe_free_model_hooks() | |
return outputs | |
class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline): | |
""" | |
Combined Pipeline for inpainting generation using Kandinsky | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): | |
A scheduler to be used in combination with `unet` to generate image latents. | |
unet ([`UNet2DConditionModel`]): | |
Conditional U-Net architecture to denoise the image embedding. | |
movq ([`VQModel`]): | |
MoVQ Decoder to generate the image from the latents. | |
prior_prior ([`PriorTransformer`]): | |
The canonincal unCLIP prior to approximate the image embedding from the text embedding. | |
prior_image_encoder ([`CLIPVisionModelWithProjection`]): | |
Frozen image-encoder. | |
prior_text_encoder ([`CLIPTextModelWithProjection`]): | |
Frozen text-encoder. | |
prior_tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
prior_scheduler ([`UnCLIPScheduler`]): | |
A scheduler to be used in combination with `prior` to generate image embedding. | |
prior_image_processor ([`CLIPImageProcessor`]): | |
A image_processor to be used to preprocess image from clip. | |
""" | |
model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq" | |
_load_connected_pipes = True | |
def __init__( | |
self, | |
unet: UNet2DConditionModel, | |
scheduler: DDPMScheduler, | |
movq: VQModel, | |
prior_prior: PriorTransformer, | |
prior_image_encoder: CLIPVisionModelWithProjection, | |
prior_text_encoder: CLIPTextModelWithProjection, | |
prior_tokenizer: CLIPTokenizer, | |
prior_scheduler: UnCLIPScheduler, | |
prior_image_processor: CLIPImageProcessor, | |
): | |
super().__init__() | |
self.register_modules( | |
unet=unet, | |
scheduler=scheduler, | |
movq=movq, | |
prior_prior=prior_prior, | |
prior_image_encoder=prior_image_encoder, | |
prior_text_encoder=prior_text_encoder, | |
prior_tokenizer=prior_tokenizer, | |
prior_scheduler=prior_scheduler, | |
prior_image_processor=prior_image_processor, | |
) | |
self.prior_pipe = KandinskyV22PriorPipeline( | |
prior=prior_prior, | |
image_encoder=prior_image_encoder, | |
text_encoder=prior_text_encoder, | |
tokenizer=prior_tokenizer, | |
scheduler=prior_scheduler, | |
image_processor=prior_image_processor, | |
) | |
self.decoder_pipe = KandinskyV22InpaintPipeline( | |
unet=unet, | |
scheduler=scheduler, | |
movq=movq, | |
) | |
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): | |
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
Note that offloading happens on a submodule basis. Memory savings are higher than with | |
`enable_model_cpu_offload`, but performance is lower. | |
""" | |
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
def progress_bar(self, iterable=None, total=None): | |
self.prior_pipe.progress_bar(iterable=iterable, total=total) | |
self.decoder_pipe.progress_bar(iterable=iterable, total=total) | |
self.decoder_pipe.enable_model_cpu_offload() | |
def set_progress_bar_config(self, **kwargs): | |
self.prior_pipe.set_progress_bar_config(**kwargs) | |
self.decoder_pipe.set_progress_bar_config(**kwargs) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], | |
mask_image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_inference_steps: int = 100, | |
guidance_scale: float = 4.0, | |
num_images_per_prompt: int = 1, | |
height: int = 512, | |
width: int = 512, | |
prior_guidance_scale: float = 4.0, | |
prior_num_inference_steps: int = 25, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image`, or tensor representing an image batch, that will be used as the starting point for the | |
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded | |
again. | |
mask_image (`np.array`): | |
Tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while | |
black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single | |
channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, | |
so the expected shape would be `(B, H, W, 1)`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
prior_guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
prior_num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
prior_callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: | |
int, callback_kwargs: Dict)`. | |
prior_callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the | |
list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in | |
the `._callback_tensor_inputs` attribute of your pipeline class. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` | |
""" | |
prior_kwargs = {} | |
if kwargs.get("prior_callback", None) is not None: | |
prior_kwargs["callback"] = kwargs.pop("prior_callback") | |
deprecate( | |
"prior_callback", | |
"1.0.0", | |
"Passing `prior_callback` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", | |
) | |
if kwargs.get("prior_callback_steps", None) is not None: | |
deprecate( | |
"prior_callback_steps", | |
"1.0.0", | |
"Passing `prior_callback_steps` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", | |
) | |
prior_kwargs["callback_steps"] = kwargs.pop("prior_callback_steps") | |
prior_outputs = self.prior_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
num_inference_steps=prior_num_inference_steps, | |
generator=generator, | |
latents=latents, | |
guidance_scale=prior_guidance_scale, | |
output_type="pt", | |
return_dict=False, | |
callback_on_step_end=prior_callback_on_step_end, | |
callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, | |
**prior_kwargs, | |
) | |
image_embeds = prior_outputs[0] | |
negative_image_embeds = prior_outputs[1] | |
prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt | |
image = [image] if isinstance(prompt, PIL.Image.Image) else image | |
mask_image = [mask_image] if isinstance(mask_image, PIL.Image.Image) else mask_image | |
if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: | |
prompt = (image_embeds.shape[0] // len(prompt)) * prompt | |
if ( | |
isinstance(image, (list, tuple)) | |
and len(image) < image_embeds.shape[0] | |
and image_embeds.shape[0] % len(image) == 0 | |
): | |
image = (image_embeds.shape[0] // len(image)) * image | |
if ( | |
isinstance(mask_image, (list, tuple)) | |
and len(mask_image) < image_embeds.shape[0] | |
and image_embeds.shape[0] % len(mask_image) == 0 | |
): | |
mask_image = (image_embeds.shape[0] // len(mask_image)) * mask_image | |
outputs = self.decoder_pipe( | |
image=image, | |
mask_image=mask_image, | |
image_embeds=image_embeds, | |
negative_image_embeds=negative_image_embeds, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback_on_step_end=callback_on_step_end, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
**kwargs, | |
) | |
self.maybe_free_model_hooks() | |
return outputs | |