File size: 4,942 Bytes
0aaa1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright 2023 Open AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Tuple

import numpy as np
import torch


@dataclass
class DifferentiableProjectiveCamera:
    """
    Implements a batch, differentiable, standard pinhole camera
    """

    origin: torch.Tensor  # [batch_size x 3]
    x: torch.Tensor  # [batch_size x 3]
    y: torch.Tensor  # [batch_size x 3]
    z: torch.Tensor  # [batch_size x 3]
    width: int
    height: int
    x_fov: float
    y_fov: float
    shape: Tuple[int]

    def __post_init__(self):
        assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
        assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
        assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2

    def resolution(self):
        return torch.from_numpy(np.array([self.width, self.height], dtype=np.float32))

    def fov(self):
        return torch.from_numpy(np.array([self.x_fov, self.y_fov], dtype=np.float32))

    def get_image_coords(self) -> torch.Tensor:
        """
        :return: coords of shape (width * height, 2)
        """
        pixel_indices = torch.arange(self.height * self.width)
        coords = torch.stack(
            [
                pixel_indices % self.width,
                torch.div(pixel_indices, self.width, rounding_mode="trunc"),
            ],
            axis=1,
        )
        return coords

    @property
    def camera_rays(self):
        batch_size, *inner_shape = self.shape
        inner_batch_size = int(np.prod(inner_shape))

        coords = self.get_image_coords()
        coords = torch.broadcast_to(coords.unsqueeze(0), [batch_size * inner_batch_size, *coords.shape])
        rays = self.get_camera_rays(coords)

        rays = rays.view(batch_size, inner_batch_size * self.height * self.width, 2, 3)

        return rays

    def get_camera_rays(self, coords: torch.Tensor) -> torch.Tensor:
        batch_size, *shape, n_coords = coords.shape
        assert n_coords == 2
        assert batch_size == self.origin.shape[0]

        flat = coords.view(batch_size, -1, 2)

        res = self.resolution()
        fov = self.fov()

        fracs = (flat.float() / (res - 1)) * 2 - 1
        fracs = fracs * torch.tan(fov / 2)

        fracs = fracs.view(batch_size, -1, 2)
        directions = (
            self.z.view(batch_size, 1, 3)
            + self.x.view(batch_size, 1, 3) * fracs[:, :, :1]
            + self.y.view(batch_size, 1, 3) * fracs[:, :, 1:]
        )
        directions = directions / directions.norm(dim=-1, keepdim=True)
        rays = torch.stack(
            [
                torch.broadcast_to(self.origin.view(batch_size, 1, 3), [batch_size, directions.shape[1], 3]),
                directions,
            ],
            dim=2,
        )
        return rays.view(batch_size, *shape, 2, 3)

    def resize_image(self, width: int, height: int) -> "DifferentiableProjectiveCamera":
        """
        Creates a new camera for the resized view assuming the aspect ratio does not change.
        """
        assert width * self.height == height * self.width, "The aspect ratio should not change."
        return DifferentiableProjectiveCamera(
            origin=self.origin,
            x=self.x,
            y=self.y,
            z=self.z,
            width=width,
            height=height,
            x_fov=self.x_fov,
            y_fov=self.y_fov,
        )


def create_pan_cameras(size: int) -> DifferentiableProjectiveCamera:
    origins = []
    xs = []
    ys = []
    zs = []
    for theta in np.linspace(0, 2 * np.pi, num=20):
        z = np.array([np.sin(theta), np.cos(theta), -0.5])
        z /= np.sqrt(np.sum(z**2))
        origin = -z * 4
        x = np.array([np.cos(theta), -np.sin(theta), 0.0])
        y = np.cross(z, x)
        origins.append(origin)
        xs.append(x)
        ys.append(y)
        zs.append(z)
    return DifferentiableProjectiveCamera(
        origin=torch.from_numpy(np.stack(origins, axis=0)).float(),
        x=torch.from_numpy(np.stack(xs, axis=0)).float(),
        y=torch.from_numpy(np.stack(ys, axis=0)).float(),
        z=torch.from_numpy(np.stack(zs, axis=0)).float(),
        width=size,
        height=size,
        x_fov=0.7,
        y_fov=0.7,
        shape=(1, len(xs)),
    )