import sys sys.path.append("..") import inspect from typing import List, Optional, Tuple, Union import torch from torch.nn import functional as F from transformers import CLIPTextModelWithProjection, CLIPTokenizer from transformers.models.clip.modeling_clip import CLIPTextModelOutput from diffusers.models import UNet2DConditionModel, UNet2DModel from diffusers.schedulers import UnCLIPScheduler from diffusers.utils import logging, randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.models import PriorTransformer import torch from torchvision.transforms import ToPILImage import copy logger = logging.get_logger(__name__) # pylint: disable=invalid-name class UnCLIPPipeline(DiffusionPipeline): """ Pipeline for text-to-image generation using unCLIP. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: text_encoder ([`~transformers.CLIPTextModelWithProjection`]): Frozen text-encoder. tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. prior ([`PriorTransformer`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. text_proj ([`UnCLIPTextProjModel`]): Utility class to prepare and combine the embeddings before they are passed to the decoder. decoder ([`UNet2DConditionModel`]): The decoder to invert the image embedding into an image. super_res_first ([`UNet2DModel`]): Super resolution UNet. Used in all but the last step of the super resolution diffusion process. super_res_last ([`UNet2DModel`]): Super resolution UNet. Used in the last step of the super resolution diffusion process. prior_scheduler ([`UnCLIPScheduler`]): Scheduler used in the prior denoising process (a modified [`DDPMScheduler`]). decoder_scheduler ([`UnCLIPScheduler`]): Scheduler used in the decoder denoising process (a modified [`DDPMScheduler`]). super_res_scheduler ([`UnCLIPScheduler`]): Scheduler used in the super resolution denoising process (a modified [`DDPMScheduler`]). """ _exclude_from_cpu_offload = ["prior"] prior: PriorTransformer decoder: UNet2DConditionModel text_proj: UnCLIPTextProjModel text_encoder: CLIPTextModelWithProjection tokenizer: CLIPTokenizer super_res_first: UNet2DModel super_res_last: UNet2DModel prior_scheduler: UnCLIPScheduler decoder_scheduler: UnCLIPScheduler super_res_scheduler: UnCLIPScheduler def __init__( self, prior: PriorTransformer, decoder: UNet2DConditionModel, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_proj: UnCLIPTextProjModel, super_res_first: UNet2DModel, super_res_last: UNet2DModel, prior_scheduler: UnCLIPScheduler, decoder_scheduler: UnCLIPScheduler, super_res_scheduler: UnCLIPScheduler, ): super().__init__() self.register_modules( prior=prior, decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, text_proj=text_proj, super_res_first=super_res_first, super_res_last=super_res_last, prior_scheduler=prior_scheduler, decoder_scheduler=decoder_scheduler, super_res_scheduler=super_res_scheduler, ) def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor( shape, generator=generator, device=device, dtype=dtype ) else: if latents.shape != shape: raise ValueError( f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, text_attention_mask: Optional[torch.Tensor] = None, ): if text_model_output is None: batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids text_mask = text_inputs.attention_mask.bool().to(device) untruncated_ids = self.tokenizer( prompt, padding="longest", return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[ -1 ] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder(text_input_ids.to(device)) prompt_embeds = text_encoder_output.text_embeds text_encoder_hidden_states = text_encoder_output.last_hidden_state else: batch_size = text_model_output[0].shape[0] prompt_embeds, text_encoder_hidden_states = ( text_model_output[0], text_model_output[1], ) text_mask = text_attention_mask prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: uncond_tokens = [""] * batch_size uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_text_mask = uncond_input.attention_mask.bool().to(device) negative_prompt_embeds_text_encoder_output = self.text_encoder( uncond_input.input_ids.to(device) ) negative_prompt_embeds = ( negative_prompt_embeds_text_encoder_output.text_embeds ) uncond_text_encoder_hidden_states = ( negative_prompt_embeds_text_encoder_output.last_hidden_state ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat( 1, num_images_per_prompt ) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_images_per_prompt, seq_len ) seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = ( uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) ) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave( num_images_per_prompt, dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_encoder_hidden_states = torch.cat( [uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) text_mask = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask @torch.no_grad() def __call__( self, prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, prior_num_inference_steps: int = 25, decoder_num_inference_steps: int = 25, super_res_num_inference_steps: int = 7, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prior_latents: Optional[torch.FloatTensor] = None, decoder_latents: Optional[torch.FloatTensor] = None, super_res_latents: Optional[torch.FloatTensor] = None, text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, text_attention_mask: Optional[torch.Tensor] = None, prior_guidance_scale: float = 4.0, decoder_guidance_scale: float = 8.0, output_type: Optional[str] = "pil", return_dict: bool = True, null_prompt_decoder: bool = False, ): """ The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. This can only be left undefined if `text_model_output` and `text_attention_mask` is passed. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. prior_num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps for the prior. More denoising steps usually lead to a higher quality image at the expense of slower inference. decoder_num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality image at the expense of slower inference. super_res_num_inference_steps (`int`, *optional*, defaults to 7): The number of denoising steps for super resolution. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prior_latents (`torch.FloatTensor` of shape (batch size, embeddings dimension), *optional*): Pre-generated noisy latents to be used as inputs for the prior. decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*): Pre-generated noisy latents to be used as inputs for the decoder. super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*): Pre-generated noisy latents to be used as inputs for the decoder. prior_guidance_scale (`float`, *optional*, defaults to 4.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. decoder_guidance_scale (`float`, *optional*, defaults to 4.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. text_model_output (`CLIPTextModelOutput`, *optional*): Pre-defined [`CLIPTextModel`] outputs that can be derived from the text encoder. Pre-defined text outputs can be passed for tasks like text embedding interpolations. Make sure to also pass `text_attention_mask` in this case. `prompt` can the be left `None`. text_attention_mask (`torch.Tensor`, *optional*): Pre-defined CLIP text attention mask that can be derived from the tokenizer. Pre-defined text attention masks are necessary when passing `text_model_output`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if prompt is not None: if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError( f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" ) else: batch_size = text_model_output[0].shape[0] device = self._execution_device batch_size = batch_size * num_images_per_prompt prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( prompt, device, num_images_per_prompt, False, text_model_output, text_attention_mask, ) hidden_states = randn_tensor( (batch_size, prompt_embeds.shape[-1]), device=prompt_embeds.device, dtype=prompt_embeds.dtype, generator=generator, ) prior_latents = self.prior( hidden_states, proj_embedding=prompt_embeds, encoder_hidden_states=text_encoder_hidden_states, attention_mask=text_mask, ).predicted_image_embedding do_classifier_free_guidance = decoder_guidance_scale > 1.0 prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( prompt if not null_prompt_decoder else "", device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask, ) prior_latents = prior_latents.expand( ( prompt_embeds.shape[0] // 2 if do_classifier_free_guidance else prompt_embeds.shape[0], prompt_embeds.shape[1], ) ) image_embeddings = prior_latents.clone() # return image_embeddings # decoder text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( image_embeddings=image_embeddings, prompt_embeds=prompt_embeds, text_encoder_hidden_states=text_encoder_hidden_states, do_classifier_free_guidance=do_classifier_free_guidance, ) if device.type == "mps": # HACK: MPS: There is a panic when padding bool tensors, # so cast to int tensor for the pad and back to bool afterwards text_mask = text_mask.type(torch.int) decoder_text_mask = F.pad( text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1 ) decoder_text_mask = decoder_text_mask.type(torch.bool) else: decoder_text_mask = F.pad( text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True ) self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) decoder_timesteps_tensor = self.decoder_scheduler.timesteps num_channels_latents = self.decoder.config.in_channels height = self.decoder.config.sample_size width = self.decoder.config.sample_size decoder_latents = self.prepare_latents( (batch_size, num_channels_latents, height, width), text_encoder_hidden_states.dtype, device, generator, decoder_latents, self.decoder_scheduler, ) for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents ) noise_pred = self.decoder( sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, class_labels=additive_clip_time_embeddings, attention_mask=decoder_text_mask, ).sample if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred_uncond, _ = noise_pred_uncond.split( latent_model_input.shape[1], dim=1 ) noise_pred_text, predicted_variance = noise_pred_text.split( latent_model_input.shape[1], dim=1 ) noise_pred = noise_pred_uncond + decoder_guidance_scale * ( noise_pred_text - noise_pred_uncond ) noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) if i + 1 == decoder_timesteps_tensor.shape[0]: prev_timestep = None else: prev_timestep = decoder_timesteps_tensor[i + 1] # compute the previous noisy sample x_t -> x_t-1 decoder_latents = self.decoder_scheduler.step( noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator, ).prev_sample decoder_latents = decoder_latents.clamp(-1, 1) image_small = decoder_latents # done decoder # super res self.super_res_scheduler.set_timesteps( super_res_num_inference_steps, device=device ) super_res_timesteps_tensor = self.super_res_scheduler.timesteps channels = self.super_res_first.config.in_channels // 2 height = self.super_res_first.config.sample_size width = self.super_res_first.config.sample_size super_res_latents = self.prepare_latents( (batch_size, channels, height, width), image_small.dtype, device, generator, super_res_latents, self.super_res_scheduler, ) if device.type == "mps": # MPS does not support many interpolations image_upscaled = F.interpolate(image_small, size=[height, width]) else: interpolate_antialias = {} if "antialias" in inspect.signature(F.interpolate).parameters: interpolate_antialias["antialias"] = True image_upscaled = F.interpolate( image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias, ) for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): # no classifier free guidance if i == super_res_timesteps_tensor.shape[0] - 1: unet = self.super_res_last else: unet = self.super_res_first latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) noise_pred = unet( sample=latent_model_input, timestep=t, ).sample if i + 1 == super_res_timesteps_tensor.shape[0]: prev_timestep = None else: prev_timestep = super_res_timesteps_tensor[i + 1] # compute the previous noisy sample x_t -> x_t-1 super_res_latents = self.super_res_scheduler.step( noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator, ).prev_sample image = super_res_latents # done super res # post processing image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)