""" SORT: A Simple, Online and Realtime Tracker Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ from __future__ import print_function import os import numpy as np from filterpy.kalman import KalmanFilter np.random.seed(0) def linear_assignment(cost_matrix): try: import lap _, x, y = lap.lapjv(cost_matrix, extend_cost=True) return np.array([[y[i],i] for i in x if i >= 0]) # except ImportError: from scipy.optimize import linear_sum_assignment x, y = linear_sum_assignment(cost_matrix) return np.array(list(zip(x, y))) def iou_batch(bb_test, bb_gt): """ From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] """ bb_gt = np.expand_dims(bb_gt, 0) bb_test = np.expand_dims(bb_test, 1) xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0]) yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) w = np.maximum(0., xx2 - xx1) h = np.maximum(0., yy2 - yy1) wh = w * h o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) return(o) def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w/2. y = bbox[1] + h/2. s = w * h #scale is just area r = w / float(h) return np.array([x, y, s, r]).reshape((4, 1)) def convert_x_to_bbox(x,score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2] * x[3]) h = x[2] / w if(score==None): return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) else: return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) class KalmanBoxTracker(object): """ This class represents the internal state of individual tracked objects observed as bbox. """ count = 0 def __init__(self,bbox): """ Initialises a tracker using initial bounding box. """ #define constant velocity model self.kf = KalmanFilter(dim_x=7, dim_z=4) self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) self.kf.R[2:,2:] *= 10. self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities self.kf.P *= 10. self.kf.Q[-1,-1] *= 0.01 self.kf.Q[4:,4:] *= 0.01 self.kf.x[:4] = convert_bbox_to_z(bbox) self.time_since_update = 0 self.id = KalmanBoxTracker.count KalmanBoxTracker.count += 1 self.history = [] self.hits = 0 self.hit_streak = 0 self.age = 0 def update(self,bbox): """ Updates the state vector with observed bbox. """ self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if((self.kf.x[6]+self.kf.x[2])<=0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if(self.time_since_update>0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x)) return self.history[-1] def get_state(self): """ Returns the current bounding box estimate. """ return convert_x_to_bbox(self.kf.x) def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): """ Assigns detections to tracked object (both represented as bounding boxes) Returns 3 lists of matches, unmatched_detections and unmatched_trackers """ if(len(trackers)==0): return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) iou_matrix = iou_batch(detections, trackers) if min(iou_matrix.shape) > 0: a = (iou_matrix > iou_threshold).astype(np.int32) if a.sum(1).max() == 1 and a.sum(0).max() == 1: matched_indices = np.stack(np.where(a), axis=1) else: matched_indices = linear_assignment(-iou_matrix) else: matched_indices = np.empty(shape=(0,2)) unmatched_detections = [] for d, det in enumerate(detections): if(d not in matched_indices[:,0]): unmatched_detections.append(d) unmatched_trackers = [] for t, trk in enumerate(trackers): if(t not in matched_indices[:,1]): unmatched_trackers.append(t) #filter out matched with low IOU matches = [] for m in matched_indices: if(iou_matrix[m[0], m[1]] self.det_thresh dets = dets[remain_inds] # get predicted locations from existing trackers. trks = np.zeros((len(self.trackers), 5)) to_del = [] ret = [] for t, trk in enumerate(trks): pos = self.trackers[t].predict()[0] trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] if np.any(np.isnan(pos)): to_del.append(t) trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) for t in reversed(to_del): self.trackers.pop(t) matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold) # update matched trackers with assigned detections for m in matched: self.trackers[m[1]].update(dets[m[0], :]) # create and initialise new trackers for unmatched detections for i in unmatched_dets: trk = KalmanBoxTracker(dets[i,:]) self.trackers.append(trk) i = len(self.trackers) for trk in reversed(self.trackers): d = trk.get_state()[0] if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive i -= 1 # remove dead tracklet if(trk.time_since_update > self.max_age): self.trackers.pop(i) if(len(ret)>0): return np.concatenate(ret) return np.empty((0,5))