import cv2 import numpy as np import lap from scipy.spatial.distance import cdist from cython_bbox import bbox_overlaps as bbox_ious from yolox.motdt_tracker import kalman_filter def _indices_to_matches(cost_matrix, indices, thresh): matched_cost = cost_matrix[tuple(zip(*indices))] matched_mask = (matched_cost <= thresh) matches = indices[matched_mask] unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0])) unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1])) return matches, unmatched_a, unmatched_b def linear_assignment(cost_matrix, thresh): if cost_matrix.size == 0: return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) matches, unmatched_a, unmatched_b = [], [], [] cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) for ix, mx in enumerate(x): if mx >= 0: matches.append([ix, mx]) unmatched_a = np.where(x < 0)[0] unmatched_b = np.where(y < 0)[0] matches = np.asarray(matches) return matches, unmatched_a, unmatched_b def ious(atlbrs, btlbrs): """ Compute cost based on IoU :type atlbrs: list[tlbr] | np.ndarray :type atlbrs: list[tlbr] | np.ndarray :rtype ious np.ndarray """ ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float) if ious.size == 0: return ious ious = bbox_ious( np.ascontiguousarray(atlbrs, dtype=np.float), np.ascontiguousarray(btlbrs, dtype=np.float) ) return ious def iou_distance(atracks, btracks): """ Compute cost based on IoU :type atracks: list[STrack] :type btracks: list[STrack] :rtype cost_matrix np.ndarray """ atlbrs = [track.tlbr for track in atracks] btlbrs = [track.tlbr for track in btracks] _ious = ious(atlbrs, btlbrs) cost_matrix = 1 - _ious return cost_matrix def nearest_reid_distance(tracks, detections, metric='cosine'): """ Compute cost based on ReID features :type tracks: list[STrack] :type detections: list[BaseTrack] :rtype cost_matrix np.ndarray """ cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float) if cost_matrix.size == 0: return cost_matrix det_features = np.asarray([track.curr_feature for track in detections], dtype=np.float32) for i, track in enumerate(tracks): cost_matrix[i, :] = np.maximum(0.0, cdist(track.features, det_features, metric).min(axis=0)) return cost_matrix def mean_reid_distance(tracks, detections, metric='cosine'): """ Compute cost based on ReID features :type tracks: list[STrack] :type detections: list[BaseTrack] :type metric: str :rtype cost_matrix np.ndarray """ cost_matrix = np.empty((len(tracks), len(detections)), dtype=np.float) if cost_matrix.size == 0: return cost_matrix track_features = np.asarray([track.curr_feature for track in tracks], dtype=np.float32) det_features = np.asarray([track.curr_feature for track in detections], dtype=np.float32) cost_matrix = cdist(track_features, det_features, metric) return cost_matrix def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False): if cost_matrix.size == 0: return cost_matrix gating_dim = 2 if only_position else 4 gating_threshold = kalman_filter.chi2inv95[gating_dim] measurements = np.asarray([det.to_xyah() for det in detections]) for row, track in enumerate(tracks): gating_distance = kf.gating_distance( track.mean, track.covariance, measurements, only_position) cost_matrix[row, gating_distance > gating_threshold] = np.inf return cost_matrix