from collections import defaultdict from loguru import logger from tqdm import tqdm import torch from yolox.utils import ( gather, is_main_process, postprocess, synchronize, time_synchronized, xyxy2xywh ) from yolox.tracker.byte_tracker import BYTETracker from yolox.sort_tracker.sort import Sort from yolox.deepsort_tracker.deepsort import DeepSort from yolox.motdt_tracker.motdt_tracker import OnlineTracker import contextlib import io import os import itertools import json import tempfile import time def write_results(filename, results): save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n' with open(filename, 'w') as f: for frame_id, tlwhs, track_ids, scores in results: for tlwh, track_id, score in zip(tlwhs, track_ids, scores): if track_id < 0: continue x1, y1, w, h = tlwh line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1), s=round(score, 2)) f.write(line) logger.info('save results to {}'.format(filename)) def write_results_no_score(filename, results): save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n' with open(filename, 'w') as f: for frame_id, tlwhs, track_ids in results: for tlwh, track_id in zip(tlwhs, track_ids): if track_id < 0: continue x1, y1, w, h = tlwh line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1)) f.write(line) logger.info('save results to {}'.format(filename)) class MOTEvaluator: """ COCO AP Evaluation class. All the data in the val2017 dataset are processed and evaluated by COCO API. """ def __init__( self, args, dataloader, img_size, confthre, nmsthre, num_classes): """ Args: dataloader (Dataloader): evaluate dataloader. img_size (int): image size after preprocess. images are resized to squares whose shape is (img_size, img_size). confthre (float): confidence threshold ranging from 0 to 1, which is defined in the config file. nmsthre (float): IoU threshold of non-max supression ranging from 0 to 1. """ self.dataloader = dataloader self.img_size = img_size self.confthre = confthre self.nmsthre = nmsthre self.num_classes = num_classes self.args = args def evaluate( self, model, distributed=False, half=False, trt_file=None, decoder=None, test_size=None, result_folder=None ): """ COCO average precision (AP) Evaluation. Iterate inference on the test dataset and the results are evaluated by COCO API. NOTE: This function will change training mode to False, please save states if needed. Args: model : model to evaluate. Returns: ap50_95 (float) : COCO AP of IoU=50:95 ap50 (float) : COCO AP of IoU=50 summary (sr): summary info of evaluation. """ # TODO half to amp_test tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor model = model.eval() if half: model = model.half() ids = [] data_list = [] results = [] video_names = defaultdict() progress_bar = tqdm if is_main_process() else iter inference_time = 0 track_time = 0 n_samples = len(self.dataloader) - 1 if trt_file is not None: from torch2trt import TRTModule model_trt = TRTModule() model_trt.load_state_dict(torch.load(trt_file)) x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() model(x) model = model_trt tracker = BYTETracker(self.args) ori_thresh = self.args.track_thresh for cur_iter, (imgs, _, info_imgs, ids) in enumerate( progress_bar(self.dataloader) ): with torch.no_grad(): # init tracker frame_id = info_imgs[2].item() video_id = info_imgs[3].item() img_file_name = info_imgs[4] video_name = img_file_name[0].split('/')[0] if video_name == 'MOT17-05-FRCNN' or video_name == 'MOT17-06-FRCNN': self.args.track_buffer = 14 elif video_name == 'MOT17-13-FRCNN' or video_name == 'MOT17-14-FRCNN': self.args.track_buffer = 25 else: self.args.track_buffer = 30 if video_name == 'MOT17-01-FRCNN': self.args.track_thresh = 0.65 elif video_name == 'MOT17-06-FRCNN': self.args.track_thresh = 0.65 elif video_name == 'MOT17-12-FRCNN': self.args.track_thresh = 0.7 elif video_name == 'MOT17-14-FRCNN': self.args.track_thresh = 0.67 else: self.args.track_thresh = ori_thresh if video_name == 'MOT20-06' or video_name == 'MOT20-08': self.args.track_thresh = 0.3 else: self.args.track_thresh = ori_thresh if video_name not in video_names: video_names[video_id] = video_name if frame_id == 1: tracker = BYTETracker(self.args) if len(results) != 0: result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1])) write_results(result_filename, results) results = [] imgs = imgs.type(tensor_type) # skip the the last iters since batchsize might be not enough for batch inference is_time_record = cur_iter < len(self.dataloader) - 1 if is_time_record: start = time.time() outputs = model(imgs) if decoder is not None: outputs = decoder(outputs, dtype=outputs.type()) outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) if is_time_record: infer_end = time_synchronized() inference_time += infer_end - start output_results = self.convert_to_coco_format(outputs, info_imgs, ids) data_list.extend(output_results) # run tracking if outputs[0] is not None: online_targets = tracker.update(outputs[0], info_imgs, self.img_size) online_tlwhs = [] online_ids = [] online_scores = [] for t in online_targets: tlwh = t.tlwh tid = t.track_id vertical = tlwh[2] / tlwh[3] > 1.6 if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical: online_tlwhs.append(tlwh) online_ids.append(tid) online_scores.append(t.score) # save results results.append((frame_id, online_tlwhs, online_ids, online_scores)) if is_time_record: track_end = time_synchronized() track_time += track_end - infer_end if cur_iter == len(self.dataloader) - 1: result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id])) write_results(result_filename, results) statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples]) if distributed: data_list = gather(data_list, dst=0) data_list = list(itertools.chain(*data_list)) torch.distributed.reduce(statistics, dst=0) eval_results = self.evaluate_prediction(data_list, statistics) synchronize() return eval_results def evaluate_sort( self, model, distributed=False, half=False, trt_file=None, decoder=None, test_size=None, result_folder=None ): """ COCO average precision (AP) Evaluation. Iterate inference on the test dataset and the results are evaluated by COCO API. NOTE: This function will change training mode to False, please save states if needed. Args: model : model to evaluate. Returns: ap50_95 (float) : COCO AP of IoU=50:95 ap50 (float) : COCO AP of IoU=50 summary (sr): summary info of evaluation. """ # TODO half to amp_test tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor model = model.eval() if half: model = model.half() ids = [] data_list = [] results = [] video_names = defaultdict() progress_bar = tqdm if is_main_process() else iter inference_time = 0 track_time = 0 n_samples = len(self.dataloader) - 1 if trt_file is not None: from torch2trt import TRTModule model_trt = TRTModule() model_trt.load_state_dict(torch.load(trt_file)) x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() model(x) model = model_trt tracker = Sort(self.args.track_thresh) for cur_iter, (imgs, _, info_imgs, ids) in enumerate( progress_bar(self.dataloader) ): with torch.no_grad(): # init tracker frame_id = info_imgs[2].item() video_id = info_imgs[3].item() img_file_name = info_imgs[4] video_name = img_file_name[0].split('/')[0] if video_name not in video_names: video_names[video_id] = video_name if frame_id == 1: tracker = Sort(self.args.track_thresh) if len(results) != 0: result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1])) write_results_no_score(result_filename, results) results = [] imgs = imgs.type(tensor_type) # skip the the last iters since batchsize might be not enough for batch inference is_time_record = cur_iter < len(self.dataloader) - 1 if is_time_record: start = time.time() outputs = model(imgs) if decoder is not None: outputs = decoder(outputs, dtype=outputs.type()) outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) if is_time_record: infer_end = time_synchronized() inference_time += infer_end - start output_results = self.convert_to_coco_format(outputs, info_imgs, ids) data_list.extend(output_results) # run tracking online_targets = tracker.update(outputs[0], info_imgs, self.img_size) online_tlwhs = [] online_ids = [] for t in online_targets: tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]] tid = t[4] vertical = tlwh[2] / tlwh[3] > 1.6 if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical: online_tlwhs.append(tlwh) online_ids.append(tid) # save results results.append((frame_id, online_tlwhs, online_ids)) if is_time_record: track_end = time_synchronized() track_time += track_end - infer_end if cur_iter == len(self.dataloader) - 1: result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id])) write_results_no_score(result_filename, results) statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples]) if distributed: data_list = gather(data_list, dst=0) data_list = list(itertools.chain(*data_list)) torch.distributed.reduce(statistics, dst=0) eval_results = self.evaluate_prediction(data_list, statistics) synchronize() return eval_results def evaluate_deepsort( self, model, distributed=False, half=False, trt_file=None, decoder=None, test_size=None, result_folder=None, model_folder=None ): """ COCO average precision (AP) Evaluation. Iterate inference on the test dataset and the results are evaluated by COCO API. NOTE: This function will change training mode to False, please save states if needed. Args: model : model to evaluate. Returns: ap50_95 (float) : COCO AP of IoU=50:95 ap50 (float) : COCO AP of IoU=50 summary (sr): summary info of evaluation. """ # TODO half to amp_test tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor model = model.eval() if half: model = model.half() ids = [] data_list = [] results = [] video_names = defaultdict() progress_bar = tqdm if is_main_process() else iter inference_time = 0 track_time = 0 n_samples = len(self.dataloader) - 1 if trt_file is not None: from torch2trt import TRTModule model_trt = TRTModule() model_trt.load_state_dict(torch.load(trt_file)) x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() model(x) model = model_trt tracker = DeepSort(model_folder, min_confidence=self.args.track_thresh) for cur_iter, (imgs, _, info_imgs, ids) in enumerate( progress_bar(self.dataloader) ): with torch.no_grad(): # init tracker frame_id = info_imgs[2].item() video_id = info_imgs[3].item() img_file_name = info_imgs[4] video_name = img_file_name[0].split('/')[0] if video_name not in video_names: video_names[video_id] = video_name if frame_id == 1: tracker = DeepSort(model_folder, min_confidence=self.args.track_thresh) if len(results) != 0: result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1])) write_results_no_score(result_filename, results) results = [] imgs = imgs.type(tensor_type) # skip the the last iters since batchsize might be not enough for batch inference is_time_record = cur_iter < len(self.dataloader) - 1 if is_time_record: start = time.time() outputs = model(imgs) if decoder is not None: outputs = decoder(outputs, dtype=outputs.type()) outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) if is_time_record: infer_end = time_synchronized() inference_time += infer_end - start output_results = self.convert_to_coco_format(outputs, info_imgs, ids) data_list.extend(output_results) # run tracking online_targets = tracker.update(outputs[0], info_imgs, self.img_size, img_file_name[0]) online_tlwhs = [] online_ids = [] for t in online_targets: tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]] tid = t[4] vertical = tlwh[2] / tlwh[3] > 1.6 if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical: online_tlwhs.append(tlwh) online_ids.append(tid) # save results results.append((frame_id, online_tlwhs, online_ids)) if is_time_record: track_end = time_synchronized() track_time += track_end - infer_end if cur_iter == len(self.dataloader) - 1: result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id])) write_results_no_score(result_filename, results) statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples]) if distributed: data_list = gather(data_list, dst=0) data_list = list(itertools.chain(*data_list)) torch.distributed.reduce(statistics, dst=0) eval_results = self.evaluate_prediction(data_list, statistics) synchronize() return eval_results def evaluate_motdt( self, model, distributed=False, half=False, trt_file=None, decoder=None, test_size=None, result_folder=None, model_folder=None ): """ COCO average precision (AP) Evaluation. Iterate inference on the test dataset and the results are evaluated by COCO API. NOTE: This function will change training mode to False, please save states if needed. Args: model : model to evaluate. Returns: ap50_95 (float) : COCO AP of IoU=50:95 ap50 (float) : COCO AP of IoU=50 summary (sr): summary info of evaluation. """ # TODO half to amp_test tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor model = model.eval() if half: model = model.half() ids = [] data_list = [] results = [] video_names = defaultdict() progress_bar = tqdm if is_main_process() else iter inference_time = 0 track_time = 0 n_samples = len(self.dataloader) - 1 if trt_file is not None: from torch2trt import TRTModule model_trt = TRTModule() model_trt.load_state_dict(torch.load(trt_file)) x = torch.ones(1, 3, test_size[0], test_size[1]).cuda() model(x) model = model_trt tracker = OnlineTracker(model_folder, min_cls_score=self.args.track_thresh) for cur_iter, (imgs, _, info_imgs, ids) in enumerate( progress_bar(self.dataloader) ): with torch.no_grad(): # init tracker frame_id = info_imgs[2].item() video_id = info_imgs[3].item() img_file_name = info_imgs[4] video_name = img_file_name[0].split('/')[0] if video_name not in video_names: video_names[video_id] = video_name if frame_id == 1: tracker = OnlineTracker(model_folder, min_cls_score=self.args.track_thresh) if len(results) != 0: result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1])) write_results(result_filename, results) results = [] imgs = imgs.type(tensor_type) # skip the the last iters since batchsize might be not enough for batch inference is_time_record = cur_iter < len(self.dataloader) - 1 if is_time_record: start = time.time() outputs = model(imgs) if decoder is not None: outputs = decoder(outputs, dtype=outputs.type()) outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) if is_time_record: infer_end = time_synchronized() inference_time += infer_end - start output_results = self.convert_to_coco_format(outputs, info_imgs, ids) data_list.extend(output_results) # run tracking online_targets = tracker.update(outputs[0], info_imgs, self.img_size, img_file_name[0]) online_tlwhs = [] online_ids = [] online_scores = [] for t in online_targets: tlwh = t.tlwh tid = t.track_id vertical = tlwh[2] / tlwh[3] > 1.6 if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical: online_tlwhs.append(tlwh) online_ids.append(tid) online_scores.append(t.score) # save results results.append((frame_id, online_tlwhs, online_ids, online_scores)) if is_time_record: track_end = time_synchronized() track_time += track_end - infer_end if cur_iter == len(self.dataloader) - 1: result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id])) write_results(result_filename, results) statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples]) if distributed: data_list = gather(data_list, dst=0) data_list = list(itertools.chain(*data_list)) torch.distributed.reduce(statistics, dst=0) eval_results = self.evaluate_prediction(data_list, statistics) synchronize() return eval_results def convert_to_coco_format(self, outputs, info_imgs, ids): data_list = [] for (output, img_h, img_w, img_id) in zip( outputs, info_imgs[0], info_imgs[1], ids ): if output is None: continue output = output.cpu() bboxes = output[:, 0:4] # preprocessing: resize scale = min( self.img_size[0] / float(img_h), self.img_size[1] / float(img_w) ) bboxes /= scale bboxes = xyxy2xywh(bboxes) cls = output[:, 6] scores = output[:, 4] * output[:, 5] for ind in range(bboxes.shape[0]): label = self.dataloader.dataset.class_ids[int(cls[ind])] pred_data = { "image_id": int(img_id), "category_id": label, "bbox": bboxes[ind].numpy().tolist(), "score": scores[ind].numpy().item(), "segmentation": [], } # COCO json format data_list.append(pred_data) return data_list def evaluate_prediction(self, data_dict, statistics): if not is_main_process(): return 0, 0, None logger.info("Evaluate in main process...") annType = ["segm", "bbox", "keypoints"] inference_time = statistics[0].item() track_time = statistics[1].item() n_samples = statistics[2].item() a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size) a_track_time = 1000 * track_time / (n_samples * self.dataloader.batch_size) time_info = ", ".join( [ "Average {} time: {:.2f} ms".format(k, v) for k, v in zip( ["forward", "track", "inference"], [a_infer_time, a_track_time, (a_infer_time + a_track_time)], ) ] ) info = time_info + "\n" # Evaluate the Dt (detection) json comparing with the ground truth if len(data_dict) > 0: cocoGt = self.dataloader.dataset.coco # TODO: since pycocotools can't process dict in py36, write data to json file. _, tmp = tempfile.mkstemp() json.dump(data_dict, open(tmp, "w")) cocoDt = cocoGt.loadRes(tmp) ''' try: from yolox.layers import COCOeval_opt as COCOeval except ImportError: from pycocotools import cocoeval as COCOeval logger.warning("Use standard COCOeval.") ''' #from pycocotools.cocoeval import COCOeval from yolox.layers import COCOeval_opt as COCOeval cocoEval = COCOeval(cocoGt, cocoDt, annType[1]) cocoEval.evaluate() cocoEval.accumulate() redirect_string = io.StringIO() with contextlib.redirect_stdout(redirect_string): cocoEval.summarize() info += redirect_string.getvalue() return cocoEval.stats[0], cocoEval.stats[1], info else: return 0, 0, info