import numpy as np import torchvision import time import math import os import copy import pdb import argparse import sys import cv2 import skimage.io import skimage.transform import skimage.color import skimage import torch import model from torch.utils.data import Dataset, DataLoader from torchvision import datasets, models, transforms from dataloader import CSVDataset, collater, Resizer, AspectRatioBasedSampler, Augmenter, UnNormalizer, Normalizer, RGB_MEAN, RGB_STD from scipy.optimize import linear_sum_assignment from tracker import BYTETracker def write_results(filename, results): save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n' with open(filename, 'w') as f: for frame_id, tlwhs, track_ids, scores in results: for tlwh, track_id, score in zip(tlwhs, track_ids, scores): if track_id < 0: continue x1, y1, w, h = tlwh line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1), s=round(score, 2)) f.write(line) def write_results_no_score(filename, results): save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n' with open(filename, 'w') as f: for frame_id, tlwhs, track_ids in results: for tlwh, track_id in zip(tlwhs, track_ids): if track_id < 0: continue x1, y1, w, h = tlwh line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1)) f.write(line) def run_each_dataset(model_dir, retinanet, dataset_path, subset, cur_dataset): print(cur_dataset) img_list = os.listdir(os.path.join(dataset_path, subset, cur_dataset, 'img1')) img_list = [os.path.join(dataset_path, subset, cur_dataset, 'img1', _) for _ in img_list if ('jpg' in _) or ('png' in _)] img_list = sorted(img_list) img_len = len(img_list) last_feat = None confidence_threshold = 0.6 IOU_threshold = 0.5 retention_threshold = 10 det_list_all = [] tracklet_all = [] results = [] max_id = 0 max_draw_len = 100 draw_interval = 5 img_width = 1920 img_height = 1080 fps = 30 tracker = BYTETracker() for idx in range((int(img_len / 2)), img_len + 1): i = idx - 1 print('tracking: ', i) with torch.no_grad(): data_path1 = img_list[min(idx, img_len - 1)] img_origin1 = skimage.io.imread(data_path1) img_h, img_w, _ = img_origin1.shape img_height, img_width = img_h, img_w resize_h, resize_w = math.ceil(img_h / 32) * 32, math.ceil(img_w / 32) * 32 img1 = np.zeros((resize_h, resize_w, 3), dtype=img_origin1.dtype) img1[:img_h, :img_w, :] = img_origin1 img1 = (img1.astype(np.float32) / 255.0 - np.array([[RGB_MEAN]])) / np.array([[RGB_STD]]) img1 = torch.from_numpy(img1).permute(2, 0, 1).view(1, 3, resize_h, resize_w) scores, transformed_anchors, last_feat = retinanet(img1.cuda().float(), last_feat=last_feat) if idx > (int(img_len / 2)): idxs = np.where(scores > 0.1) # run tracking online_targets = tracker.update(transformed_anchors[idxs[0], :4], scores[idxs[0]]) online_tlwhs = [] online_ids = [] online_scores = [] for t in online_targets: tlwh = t.tlwh tid = t.track_id online_tlwhs.append(tlwh) online_ids.append(tid) online_scores.append(t.score) results.append((idx, online_tlwhs, online_ids, online_scores)) fout_tracking = os.path.join(model_dir, 'results', cur_dataset + '.txt') write_results(fout_tracking, results) def main(args=None): parser = argparse.ArgumentParser(description='Simple script for testing a CTracker network.') parser.add_argument('--dataset_path', default='/dockerdata/home/jeromepeng/data/MOT/MOT17/', type=str, help='Dataset path, location of the images sequence.') parser.add_argument('--model_dir', default='./trained_model/', help='Path to model (.pt) file.') parser.add_argument('--model_path', default='./trained_model/model_final.pth', help='Path to model (.pt) file.') parser.add_argument('--seq_nums', default=0, type=int) parser = parser.parse_args(args) if not os.path.exists(os.path.join(parser.model_dir, 'results')): os.makedirs(os.path.join(parser.model_dir, 'results')) retinanet = model.resnet50(num_classes=1, pretrained=True) # retinanet_save = torch.load(os.path.join(parser.model_dir, 'model_final.pth')) retinanet_save = torch.load(os.path.join(parser.model_path)) # rename moco pre-trained keys state_dict = retinanet_save.state_dict() for k in list(state_dict.keys()): # retain only encoder up to before the embedding layer if k.startswith('module.'): # remove prefix state_dict[k[len("module."):]] = state_dict[k] # delete renamed or unused k del state_dict[k] retinanet.load_state_dict(state_dict) use_gpu = True if use_gpu: retinanet = retinanet.cuda() retinanet.eval() seq_nums = [] if parser.seq_nums > 0: seq_nums.append(parser.seq_nums) else: seq_nums = [2, 4, 5, 9, 10, 11, 13] for seq_num in seq_nums: run_each_dataset(parser.model_dir, retinanet, parser.dataset_path, 'train', 'MOT17-{:02d}'.format(seq_num)) # for seq_num in [1, 3, 6, 7, 8, 12, 14]: # run_each_dataset(parser.model_dir, retinanet, parser.dataset_path, 'test', 'MOT17-{:02d}'.format(seq_num)) if __name__ == '__main__': main()