import numpy as np import torch import cv2 import os from .reid_model import Extractor from yolox.deepsort_tracker import kalman_filter, linear_assignment, iou_matching from yolox.data.dataloading import get_yolox_datadir from .detection import Detection from .track import Track def _cosine_distance(a, b, data_is_normalized=False): if not data_is_normalized: a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True) b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True) return 1. - np.dot(a, b.T) def _nn_cosine_distance(x, y): distances = _cosine_distance(x, y) return distances.min(axis=0) class Tracker: def __init__(self, metric, max_iou_distance=0.7, max_age=70, n_init=3): self.metric = metric self.max_iou_distance = max_iou_distance self.max_age = max_age self.n_init = n_init self.kf = kalman_filter.KalmanFilter() self.tracks = [] self._next_id = 1 def predict(self): """Propagate track state distributions one time step forward. This function should be called once every time step, before `update`. """ for track in self.tracks: track.predict(self.kf) def increment_ages(self): for track in self.tracks: track.increment_age() track.mark_missed() def update(self, detections, classes): """Perform measurement update and track management. Parameters ---------- detections : List[deep_sort.detection.Detection] A list of detections at the current time step. """ # Run matching cascade. matches, unmatched_tracks, unmatched_detections = \ self._match(detections) # Update track set. for track_idx, detection_idx in matches: self.tracks[track_idx].update( self.kf, detections[detection_idx]) for track_idx in unmatched_tracks: self.tracks[track_idx].mark_missed() for detection_idx in unmatched_detections: self._initiate_track(detections[detection_idx], classes[detection_idx].item()) self.tracks = [t for t in self.tracks if not t.is_deleted()] # Update distance metric. active_targets = [t.track_id for t in self.tracks if t.is_confirmed()] features, targets = [], [] for track in self.tracks: if not track.is_confirmed(): continue features += track.features targets += [track.track_id for _ in track.features] track.features = [] self.metric.partial_fit( np.asarray(features), np.asarray(targets), active_targets) def _match(self, detections): def gated_metric(tracks, dets, track_indices, detection_indices): features = np.array([dets[i].feature for i in detection_indices]) targets = np.array([tracks[i].track_id for i in track_indices]) cost_matrix = self.metric.distance(features, targets) cost_matrix = linear_assignment.gate_cost_matrix( self.kf, cost_matrix, tracks, dets, track_indices, detection_indices) return cost_matrix # Split track set into confirmed and unconfirmed tracks. confirmed_tracks = [ i for i, t in enumerate(self.tracks) if t.is_confirmed()] unconfirmed_tracks = [ i for i, t in enumerate(self.tracks) if not t.is_confirmed()] # Associate confirmed tracks using appearance features. matches_a, unmatched_tracks_a, unmatched_detections = \ linear_assignment.matching_cascade( gated_metric, self.metric.matching_threshold, self.max_age, self.tracks, detections, confirmed_tracks) # Associate remaining tracks together with unconfirmed tracks using IOU. iou_track_candidates = unconfirmed_tracks + [ k for k in unmatched_tracks_a if self.tracks[k].time_since_update == 1] unmatched_tracks_a = [ k for k in unmatched_tracks_a if self.tracks[k].time_since_update != 1] matches_b, unmatched_tracks_b, unmatched_detections = \ linear_assignment.min_cost_matching( iou_matching.iou_cost, self.max_iou_distance, self.tracks, detections, iou_track_candidates, unmatched_detections) matches = matches_a + matches_b unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b)) return matches, unmatched_tracks, unmatched_detections def _initiate_track(self, detection, class_id): mean, covariance = self.kf.initiate(detection.to_xyah()) self.tracks.append(Track( mean, covariance, self._next_id, class_id, self.n_init, self.max_age, detection.feature)) self._next_id += 1 class NearestNeighborDistanceMetric(object): def __init__(self, metric, matching_threshold, budget=None): if metric == "cosine": self._metric = _nn_cosine_distance else: raise ValueError( "Invalid metric; must be either 'euclidean' or 'cosine'") self.matching_threshold = matching_threshold self.budget = budget self.samples = {} def partial_fit(self, features, targets, active_targets): for feature, target in zip(features, targets): self.samples.setdefault(target, []).append(feature) if self.budget is not None: self.samples[target] = self.samples[target][-self.budget:] self.samples = {k: self.samples[k] for k in active_targets} def distance(self, features, targets): cost_matrix = np.zeros((len(targets), len(features))) for i, target in enumerate(targets): cost_matrix[i, :] = self._metric(self.samples[target], features) return cost_matrix class DeepSort(object): def __init__(self, model_path, max_dist=0.1, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7, max_age=30, n_init=3, nn_budget=100, use_cuda=True): self.min_confidence = min_confidence self.nms_max_overlap = nms_max_overlap self.extractor = Extractor(model_path, use_cuda=use_cuda) max_cosine_distance = max_dist metric = NearestNeighborDistanceMetric( "cosine", max_cosine_distance, nn_budget) self.tracker = Tracker( metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init) def update(self, output_results, img_info, img_size, img_file_name): img_file_name = os.path.join(get_yolox_datadir(), 'mot', 'train', img_file_name) ori_img = cv2.imread(img_file_name) self.height, self.width = ori_img.shape[:2] # post process detections output_results = output_results.cpu().numpy() confidences = output_results[:, 4] * output_results[:, 5] bboxes = output_results[:, :4] # x1y1x2y2 img_h, img_w = img_info[0], img_info[1] scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w)) bboxes /= scale bbox_xyxy = bboxes bbox_tlwh = self._xyxy_to_tlwh_array(bbox_xyxy) remain_inds = confidences > self.min_confidence bbox_tlwh = bbox_tlwh[remain_inds] confidences = confidences[remain_inds] # generate detections features = self._get_features(bbox_tlwh, ori_img) detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate( confidences) if conf > self.min_confidence] classes = np.zeros((len(detections), )) # run on non-maximum supression boxes = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) # update tracker self.tracker.predict() self.tracker.update(detections, classes) # output bbox identities outputs = [] for track in self.tracker.tracks: if not track.is_confirmed() or track.time_since_update > 1: continue box = track.to_tlwh() x1, y1, x2, y2 = self._tlwh_to_xyxy_noclip(box) track_id = track.track_id class_id = track.class_id outputs.append(np.array([x1, y1, x2, y2, track_id, class_id], dtype=np.int)) if len(outputs) > 0: outputs = np.stack(outputs, axis=0) return outputs """ TODO: Convert bbox from xc_yc_w_h to xtl_ytl_w_h Thanks JieChen91@github.com for reporting this bug! """ @staticmethod def _xywh_to_tlwh(bbox_xywh): if isinstance(bbox_xywh, np.ndarray): bbox_tlwh = bbox_xywh.copy() elif isinstance(bbox_xywh, torch.Tensor): bbox_tlwh = bbox_xywh.clone() bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2. bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2. return bbox_tlwh @staticmethod def _xyxy_to_tlwh_array(bbox_xyxy): if isinstance(bbox_xyxy, np.ndarray): bbox_tlwh = bbox_xyxy.copy() elif isinstance(bbox_xyxy, torch.Tensor): bbox_tlwh = bbox_xyxy.clone() bbox_tlwh[:, 2] = bbox_xyxy[:, 2] - bbox_xyxy[:, 0] bbox_tlwh[:, 3] = bbox_xyxy[:, 3] - bbox_xyxy[:, 1] return bbox_tlwh def _xywh_to_xyxy(self, bbox_xywh): x, y, w, h = bbox_xywh x1 = max(int(x - w / 2), 0) x2 = min(int(x + w / 2), self.width - 1) y1 = max(int(y - h / 2), 0) y2 = min(int(y + h / 2), self.height - 1) return x1, y1, x2, y2 def _tlwh_to_xyxy(self, bbox_tlwh): """ TODO: Convert bbox from xtl_ytl_w_h to xc_yc_w_h Thanks JieChen91@github.com for reporting this bug! """ x, y, w, h = bbox_tlwh x1 = max(int(x), 0) x2 = min(int(x+w), self.width - 1) y1 = max(int(y), 0) y2 = min(int(y+h), self.height - 1) return x1, y1, x2, y2 def _tlwh_to_xyxy_noclip(self, bbox_tlwh): """ TODO: Convert bbox from xtl_ytl_w_h to xc_yc_w_h Thanks JieChen91@github.com for reporting this bug! """ x, y, w, h = bbox_tlwh x1 = x x2 = x + w y1 = y y2 = y + h return x1, y1, x2, y2 def increment_ages(self): self.tracker.increment_ages() def _xyxy_to_tlwh(self, bbox_xyxy): x1, y1, x2, y2 = bbox_xyxy t = x1 l = y1 w = int(x2 - x1) h = int(y2 - y1) return t, l, w, h def _get_features(self, bbox_xywh, ori_img): im_crops = [] for box in bbox_xywh: x1, y1, x2, y2 = self._tlwh_to_xyxy(box) im = ori_img[y1:y2, x1:x2] im_crops.append(im) if im_crops: features = self.extractor(im_crops) else: features = np.array([]) return features