# Import libraries from dotenv import load_dotenv import os import google.generativeai as genai from PIL import Image import streamlit as st # Load API Key load_dotenv() genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Function to load Google Gemini Vision model and get response def get_response_code(image, prompt): model = genai.GenerativeModel('gemini-pro-vision') response = model.generate_content([image[0], prompt]) return response.text # Function to preprocess image data def prep_image(uploaded_file): # Check if there is any data if uploaded_file is not None: # Read the file as bytes bytes_data = uploaded_file.getvalue() # Get the image part information image_parts = [ { "mime_type": uploaded_file.type, "data": bytes_data } ] return image_parts else: raise FileNotFoundError("No File is uploaded!") # Configuring Streamlit App st.set_page_config(page_title="Code Interpreter") st.image('LOGO.jpg', width=70) st.header("Code Interpreter") # Section for Code Interpreter upload_code_file = st.file_uploader("Choose an image of code...", type=["jpg", "jpeg", "png"]) if upload_code_file is not None: # Show the uploaded code image code_image = Image.open(upload_code_file) st.image(code_image, caption="Uploaded Code Image", use_column_width=True) # Prompt Template for code interpretation input_prompt_code = """ CONVERT THE IMAGES OF THE MCQ TO TEXT DONT FORGET THE OPTIONS """ # Button for code interpretation submit = st.button("Interpret Code!") if submit: code_image_data = prep_image(upload_code_file) response = get_response_code(code_image_data, input_prompt_code) st.subheader("Code AI: ") st.write(response) else: st.info("Please upload an image of the code to proceed.")