# app.py (HF Spaces CPU-Optimized) # RAG sekolah super hemat CPU: # - Default model: 3B instruct (GGUF) + ctx 1024 # - Retrieval cepat: FAISS top-12 → pilih kalimat pakai lexical overlap (tanpa encode per-kalimat) # - Encoder dipakai HANYA untuk query & FAISS (1x per request) # - Jawaban final lewat ..., stop di , retry kalau kosong/ellipsis # - Admin + Auth Postgres tetap sama import os, json, re, time, logging from functools import lru_cache, wraps from typing import Dict, List, Tuple from dataclasses import dataclass from datetime import datetime from zoneinfo import ZoneInfo from pathlib import Path from flask import ( Flask, render_template, request, redirect, url_for, session, jsonify, flash ) import numpy as np import faiss import torch from transformers import AutoTokenizer, AutoModel from dotenv import load_dotenv load_dotenv() # ========= ENV & LOGGING ========= os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "TRUE") os.environ.setdefault("OMP_NUM_THREADS", "1") try: torch.set_num_threads(int(os.environ.get("NUM_THREADS", "3"))) # 3 thread cukup di CPU Spaces torch.set_num_interop_threads(1) except Exception: pass logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s") log = logging.getLogger("rag-app") # ========= IMPORT EKSTERNAL (wrapper & guardrail) ========= from Guardrail import validate_input # -> bool from Model import load_model, generate # -> llama.cpp wrapper # ========= PATH ROOT ========= BASE_DIR = Path(__file__).resolve().parent # ========= KONFIG MODEL & RAG (di-tune untuk CPU) ========= GGUF_DEFAULT = "DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf" # kecil & cepat; upload ke /models MODEL_PATH = str(BASE_DIR / "models" / os.getenv("GGUF_FILENAME", GGUF_DEFAULT)) CTX_WINDOW = int(os.environ.get("CTX_WINDOW", 1024)) N_GPU_LAYERS = int(os.environ.get("N_GPU_LAYERS", 0)) N_THREADS = int(os.environ.get("NUM_THREADS", 3)) ENCODER_NAME = os.environ.get("ENCODER_NAME", "intfloat/multilingual-e5-large") ENCODER_DEVICE = torch.device("cpu") # Dataset sudah ada di Space → path RELATIF (samakan dengan struktur kamu) SUBJECTS: Dict[str, Dict[str, str]] = { "ipas": { "index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Ipas" / "IPA_index.index"), "chunks": str(BASE_DIR / "Dataset" / "Ipas" / "Chunk" / "ipas_chunks.json"), "embeddings": str(BASE_DIR / "Dataset" / "Ipas" / "Embedd"/ "ipas_embeddings.npy"), "label": "IPAS", "desc": "Ilmu Pengetahuan Alam dan Sosial" }, "penjas": { "index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Penjas" / "PENJAS_index.index"), "chunks": str(BASE_DIR / "Dataset" / "Penjas" / "Chunk" / "penjas_chunks.json"), "embeddings": str(BASE_DIR / "Dataset" / "Penjas" / "Embedd" / "penjas_embeddings.npy"), "label": "PJOK", "desc": "Pendidikan Jasmani, Olahraga, dan Kesehatan" }, "pancasila": { "index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Pancasila" / "PANCASILA_index.index"), "chunks": str(BASE_DIR / "Dataset" / "Pancasila" / "Chunk" / "pancasila_chunks.json"), "embeddings": str(BASE_DIR / "Dataset" / "Pancasila" / "Embedd" / "pancasila_embeddings.npy"), "label": "PANCASILA", "desc": "Pendidikan Pancasila dan Kewarganegaraan" } } # ======= Threshold & parameter cepat (sudah dilonggarkan & adaptif) ======= TOP_K_FAISS = int(os.environ.get("TOP_K_FAISS", 15)) TOP_K_FINAL = int(os.environ.get("TOP_K_FINAL", 10)) MIN_COSINE = float(os.environ.get("MIN_COSINE", 0.83)) # dulu 0.83 MIN_LEXICAL = float(os.environ.get("MIN_LEXICAL", 0.10)) # dulu 0.8 → terlalu ketat utk query pendek FALLBACK_TEXT = os.environ.get("FALLBACK_TEXT", "maap pengetahuan tidak ada dalam database") GUARDRAIL_BLOCK_TEXT = os.environ.get("GUARDRAIL_BLOCK_TEXT", "maap, pertanyaan ditolak oleh guardrail") ENABLE_PROFILING = os.environ.get("ENABLE_PROFILING", "false").lower() == "true" # ========= APP ========= app = Flask(__name__) app.secret_key = os.environ.get("FLASK_SECRET_KEY", "dev-secret-please-change") from werkzeug.middleware.proxy_fix import ProxyFix app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1, x_proto=1, x_host=1) app.config.update( SESSION_COOKIE_NAME="session", SESSION_COOKIE_SAMESITE="None", SESSION_COOKIE_SECURE=True, SESSION_COOKIE_HTTPONLY=True, SESSION_COOKIE_PATH="/", PREFERRED_URL_SCHEME="https", ) # ========= GLOBALS ========= ENCODER_TOKENIZER = None ENCODER_MODEL = None LLM = None @dataclass(frozen=True) class SubjectAssets: index: faiss.Index texts: List[str] embs: np.ndarray # ========= TEKS UTIL ========= STOPWORDS_ID = { "yang","dan","atau","pada","di","ke","dari","itu","ini","adalah","dengan", "untuk","serta","sebagai","oleh","dalam","akan","kamu","apa","karena", "agar","sehingga","terhadap","dapat","juga","para","diri", } TOKEN_RE = re.compile(r"[A-Za-zÀ-ÖØ-öø-ÿ]+", re.UNICODE) @lru_cache(maxsize=4096) def _tok_cached(word: str) -> str: return word.lower() def tok_id(text: str) -> List[str]: return [tw for w in TOKEN_RE.findall(text or "") if (tw := _tok_cached(w)) not in STOPWORDS_ID] def lexical_overlap(query: str, sent: str) -> float: q = set(tok_id(query)); s = set(tok_id(sent)) if not q or not s: return 0.0 return len(q & s) / max(1, len(q | s)) QUESTION_LIKE_RE = re.compile(r"(^\s*(apa|mengapa|bagaimana|sebutkan|jelaskan)\b|[?]$)", re.IGNORECASE) # Relaksasi filter instruksi: hanya pola yang benar-benar instruksi tugas di awal kalimat INSTRUCTION_RE = re.compile(r"^\s*(kerjakan|tugas\s*:|diskusikan|latihan\s*:)\b", re.IGNORECASE) META_PREFIX_PATTERNS = [ r"berdasarkan\s+(?:kalimat|sumber|teks|konten|informasi)(?:\s+(?:di\s+atas|tersebut))?", r"menurut\s+(?:sumber|teks|konten)", r"merujuk\s+pada", r"mengacu\s+pada", r"bersumber\s+dari", r"dari\s+(?:kalimat|sumber|teks|konten)" ] META_PREFIX_RE = re.compile(r"^\s*(?:" + r"|".join(META_PREFIX_PATTERNS) + r")\s*[:\-–—,]?\s*", re.IGNORECASE) def clean_prefix(t: str) -> str: t = (t or "").strip() for _ in range(3): t2 = META_PREFIX_RE.sub("", t).lstrip() if t2 == t: break t = t2 return t def strip_meta_sentence(s: str) -> str: s = clean_prefix(s or "") if re.match(r"^\s*(berdasarkan|menurut|merujuk|mengacu|bersumber|dari)\b", s, re.IGNORECASE): s = re.sub(r"^\s*[^,.;!?]*[,.;!?]\s*", "", s) or s s = clean_prefix(s) return s.strip() SENT_SPLIT_RE = re.compile(r"(?<=[.!?])\s+") def split_sentences_fast(text: str) -> List[str]: outs = [] for p in SENT_SPLIT_RE.split(text or ""): s = clean_prefix((p or "").strip()) if not s: continue # Opsi: jika dataset kamu sering tanpa tanda akhir, boleh aktifkan ini: # if s and s[-1] not in ".!?": # s += "." if QUESTION_LIKE_RE.search(s): continue if INSTRUCTION_RE.search(s): continue if len(s) < 12: continue outs.append(s) return outs # ========= MODEL WARMUP ========= def warmup_models(): global ENCODER_TOKENIZER, ENCODER_MODEL, LLM if ENCODER_TOKENIZER is None or ENCODER_MODEL is None: log.info(f"[INIT] Load encoder: {ENCODER_NAME} (CPU)") ENCODER_TOKENIZER = AutoTokenizer.from_pretrained(ENCODER_NAME) ENCODER_MODEL = AutoModel.from_pretrained(ENCODER_NAME).to(ENCODER_DEVICE).eval() if LLM is None: log.info(f"[INIT] Load LLM: {MODEL_PATH} | ctx={CTX_WINDOW} | threads={N_THREADS}") LLM = load_model(MODEL_PATH, n_ctx=CTX_WINDOW, n_gpu_layers=N_GPU_LAYERS, n_threads=N_THREADS) # ========= ASSETS ========= @lru_cache(maxsize=8) def load_subject_assets(subject_key: str) -> "SubjectAssets": if subject_key not in SUBJECTS: raise ValueError(f"Unknown subject: {subject_key}") cfg = SUBJECTS[subject_key] log.info(f"[ASSETS] Loading subject={subject_key} | index={cfg['index']}") if not os.path.exists(cfg["index"]): raise FileNotFoundError(cfg["index"]) if not os.path.exists(cfg["chunks"]): raise FileNotFoundError(cfg["chunks"]) if not os.path.exists(cfg["embeddings"]): raise FileNotFoundError(cfg["embeddings"]) index = faiss.read_index(cfg["index"]) with open(cfg["chunks"], "r", encoding="utf-8") as f: texts = [it.get("text", "") for it in json.load(f)] embs = np.load(cfg["embeddings"]) # (N, dim) if index.ntotal != len(embs): raise RuntimeError(f"Mismatch ntotal({index.ntotal}) vs emb({len(embs)})") return SubjectAssets(index=index, texts=texts, embs=embs) # ========= ENCODER ========= @torch.inference_mode() @lru_cache(maxsize=1024) def encode_query_exact(text: str) -> np.ndarray: toks = ENCODER_TOKENIZER(text, padding=True, truncation=True, return_tensors="pt").to(ENCODER_DEVICE) out = ENCODER_MODEL(**toks) vec = out.last_hidden_state.mean(dim=1) return vec.cpu().numpy() def cosine_sim(a: np.ndarray, b: np.ndarray) -> float: a = np.asarray(a).reshape(-1); b = np.asarray(b).reshape(-1) denom = (np.linalg.norm(a) * np.linalg.norm(b)) + 1e-12 return float(np.dot(a, b) / denom) # ========= RETRIEVAL CEPAT ========= def best_cosine_from_faiss(query: str, subject_key: str) -> float: assets = load_subject_assets(subject_key) q = encode_query_exact(query) _, I = assets.index.search(q, TOP_K_FAISS) qv = q.reshape(-1) best = -1.0 for i in I[0]: if 0 <= i < len(assets.texts): best = max(best, cosine_sim(qv, assets.embs[i])) return best def retrieve_top_chunks(query: str, subject_key: str) -> List[str]: assets = load_subject_assets(subject_key) q = encode_query_exact(query) _, idx = assets.index.search(q, TOP_K_FAISS) idxs = [i for i in idx[0] if 0 <= i < len(assets.texts)] return [assets.texts[i] for i in idxs[:TOP_K_FINAL]] # ======= Seleksi kalimat dua-fase (ketat → longgar) ======= def pick_best_sentences_fast(query: str, chunks: List[str], top_k: int = 4) -> List[str]: """ Fase-1: ambil kalimat dg overlap >= MIN_LEXICAL Fase-2 (fallback): kalau hasil < top_k, ambil kalimat skor tertinggi meski < MIN_LEXICAL """ cands: List[Tuple[float, str]] = [] for ch in chunks: for s in split_sentences_fast(ch): ovl = lexical_overlap(query, s) L = len(s) len_bonus = 0.05 if 50 <= L <= 220 else 0.0 score = ovl + len_bonus cands.append((score, clean_prefix(s))) if not cands: log.info("[RAG] Tidak ada kandidat kalimat (split_sentences menghasilkan 0).") return [] cands.sort(key=lambda x: x[0], reverse=True) strict = [s for sc, s in cands if sc + 1e-6 >= MIN_LEXICAL] if len(strict) >= top_k: return strict[:top_k] log.info(f"[RAG] Kalimat relevan < {top_k} pada MIN_LEXICAL={MIN_LEXICAL}; fallback longgar dipakai.") return [s for _, s in cands[:top_k]] # ========= PROMPT ========= def build_prompt(user_query: str, sentences: List[str]) -> str: block = "\n".join(f"- {clean_prefix(s)}" for s in sentences) system = ( "Kamu asisten RAG.\n" f"- Jika tidak ada kalimat yang relevan, tulis persis: {FALLBACK_TEXT}\n" "- Jawab TEPAT 1 kalimat, ringkas, Bahasa Indonesia baku (≥ 6 kata).\n" "- Tanpa frasa meta (berdasarkan/menurut/merujuk/mengacu/bersumber).\n" "- Tulis jawaban final di dalam tag Jawaban. dan jangan menulis apa pun setelah ." ) fewshot = ( "Contoh format: \n" "KALIMAT SUMBER:\n- Air memuai saat dipanaskan.\n" "PERTANYAAN: Apa yang terjadi pada air saat dipanaskan?\n" "Air akan memuai ketika dipanaskan.\n" ) return ( f"{system}\n\n{fewshot}\n" f"KALIMAT SUMBER:\n{block}\n\n" f"PERTANYAAN: {user_query}\n" f"TULIS JAWABAN DI DALAM ... SAJA:" ) @lru_cache(maxsize=1024) def validate_input_cached(q: str) -> bool: try: return validate_input(q) except Exception as e: log.exception(f"[GUARDRAIL] error: {e}") return False # ========= AUTH (POSTGRES) ========= from werkzeug.security import generate_password_hash, check_password_hash from sqlalchemy import create_engine, Column, Integer, String, Text, Boolean, func, or_ from sqlalchemy.orm import sessionmaker, scoped_session, declarative_base, Session POSTGRES_URL = os.environ.get("POSTGRES_URL") if not POSTGRES_URL: raise RuntimeError("POSTGRES_URL tidak ditemukan. Set di Settings → Variables.") engine = create_engine(POSTGRES_URL, pool_pre_ping=True, future=True, echo=False) SessionLocal = scoped_session(sessionmaker(bind=engine, autoflush=False, autocommit=False, future=True)) Base = declarative_base() class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True) username = Column(String(50), unique=True, nullable=False, index=True) email = Column(String(120), unique=True, nullable=False, index=True) password = Column(Text, nullable=False) is_active = Column(Boolean, default=True, nullable=False) is_admin = Column(Boolean, default=False, nullable=False) class ChatHistory(Base): __tablename__ = "chat_history" id = Column(Integer, primary_key=True) user_id = Column(Integer, nullable=False, index=True) subject_key = Column(String(50), nullable=False, index=True) role = Column(String(10), nullable=False) message = Column(Text, nullable=False) timestamp = Column(Integer, server_default=func.extract("epoch", func.now())) Base.metadata.create_all(bind=engine) JKT_TZ = ZoneInfo("Asia/Jakarta") @app.template_filter("fmt_ts") def fmt_ts(epoch_int: int): try: dt = datetime.fromtimestamp(int(epoch_int), tz=JKT_TZ) return dt.strftime("%d %b %Y %H:%M") except Exception: return "-" def db(): return SessionLocal() def login_required(view_func): @wraps(view_func) def wrapper(*args, **kwargs): if not session.get("logged_in"): return redirect(url_for("auth_login")) return view_func(*args, **kwargs) return wrapper def admin_required(view_func): @wraps(view_func) def wrapper(*args, **kwargs): if not session.get("logged_in"): return redirect(url_for("auth_login")) if not session.get("is_admin"): flash("Hanya admin yang boleh mengakses halaman itu.", "error") return redirect(url_for("subjects")) return view_func(*args, **kwargs) return wrapper # ========= ROUTES ========= @app.route("/") def root(): return redirect(url_for("auth_login")) @app.route("/auth/login", methods=["GET", "POST"]) def auth_login(): if request.method == "POST": identity = ( request.form.get("identity") or request.form.get("email") or request.form.get("username") or "" ).strip().lower() pw_input = (request.form.get("password") or "").strip() if not identity or not pw_input: flash("Mohon isi email/username dan password.", "error") return render_template("login.html"), 400 s = db() try: user = ( s.query(User) .filter(or_(func.lower(User.username) == identity, func.lower(User.email) == identity)) .first() ) log.info(f"[LOGIN] identity='{identity}' found={bool(user)} active={getattr(user,'is_active',None)}") ok = bool(user and user.is_active and check_password_hash(user.password, pw_input)) finally: s.close() if not ok: flash("Identitas atau password salah.", "error") return render_template("login.html"), 401 session["logged_in"] = True session["user_id"] = user.id session["username"] = user.username session["is_admin"] = bool(user.is_admin) log.info(f"[LOGIN] OK user_id={user.id}; session set.") return redirect(url_for("subjects")) return render_template("login.html") @app.route("/whoami") def whoami(): return { "logged_in": bool(session.get("logged_in")), "user_id": session.get("user_id"), "username": session.get("username"), "is_admin": session.get("is_admin"), } @app.route("/auth/register", methods=["GET", "POST"]) def auth_register(): if request.method == "POST": username = (request.form.get("username") or "").strip().lower() email = (request.form.get("email") or "").strip().lower() pw = (request.form.get("password") or "").strip() confirm = (request.form.get("confirm") or "").strip() if not username or not email or not pw: flash("Semua field wajib diisi.", "error") return render_template("register.html"), 400 if len(pw) < 6: flash("Password minimal 6 karakter.", "error") return render_template("register.html"), 400 if pw != confirm: flash("Konfirmasi password tidak cocok.", "error") return render_template("register.html"), 400 s = db() try: existed = ( s.query(User) .filter(or_(func.lower(User.username) == username, func.lower(User.email) == email)) .first() ) if existed: flash("Username/Email sudah terpakai.", "error") return render_template("register.html"), 409 u = User(username=username, email=email, password=generate_password_hash(pw), is_active=True) s.add(u); s.commit() finally: s.close() flash("Registrasi berhasil. Silakan login.", "success") return redirect(url_for("auth_login")) return render_template("register.html") @app.route("/auth/logout") def auth_logout(): session.clear() return redirect(url_for("auth_login")) @app.route("/about") def about(): return render_template("about.html") @app.route("/subjects") @login_required def subjects(): log.info(f"[SESSION DEBUG] logged_in={session.get('logged_in')} user_id={session.get('user_id')}") return render_template("home.html", subjects=SUBJECTS) @app.route("/chat/") @login_required def chat_subject(subject_key: str): if subject_key not in SUBJECTS: return redirect(url_for("subjects")) session["subject_selected"] = subject_key label = SUBJECTS[subject_key]["label"] s = db() try: uid = session.get("user_id") rows = ( s.query(ChatHistory) .filter_by(user_id=uid, subject_key=subject_key) .order_by(ChatHistory.id.asc()) .all() ) history = [{"role": r.role, "message": r.message} for r in rows] finally: s.close() return render_template("chat.html", subject=subject_key, subject_label=label, history=history) @app.route("/health") def health(): return jsonify({ "ok": True, "encoder_loaded": ENCODER_MODEL is not None, "llm_loaded": LLM is not None, "model_path": MODEL_PATH, "ctx_window": CTX_WINDOW, "threads": N_THREADS, }) @app.route("/ask/", methods=["POST"]) @login_required def ask(subject_key: str): if subject_key not in SUBJECTS: return jsonify({"ok": False, "error": "invalid subject"}), 400 warmup_models() t0 = time.perf_counter() data = request.get_json(silent=True) or {} query = (data.get("message") or "").strip() if not query: return jsonify({"ok": False, "error": "empty query"}), 400 if not validate_input_cached(query): return jsonify({"ok": True, "answer": GUARDRAIL_BLOCK_TEXT}) try: _ = load_subject_assets(subject_key) except Exception as e: log.exception(f"[ASSETS] error: {e}") return jsonify({"ok": False, "error": f"subject assets error: {e}"}), 500 best = best_cosine_from_faiss(query, subject_key) log.info(f"[RAG] Subject={subject_key.upper()} | Best cosine={best:.3f}") if best < MIN_COSINE: log.info(f"[RAG] Fallback by cosine: {best:.3f} < {MIN_COSINE}") return jsonify({"ok": True, "answer": FALLBACK_TEXT}) chunks = retrieve_top_chunks(query, subject_key) if not chunks: log.info("[RAG] Fallback by chunks=0") return jsonify({"ok": True, "answer": FALLBACK_TEXT}) sentences = pick_best_sentences_fast(query, chunks, top_k=5) log.info(f"[RAG] sentences_selected={len(sentences)} (min_lex={MIN_LEXICAL}, top_k={5})") if not sentences: log.info("[RAG] Fallback by sentences=0") return jsonify({"ok": True, "answer": FALLBACK_TEXT}) prompt = build_prompt(query, sentences) try: # PASS-1: deterministik & singkat raw_answer = generate( LLM, prompt, max_tokens=int(os.environ.get("MAX_TOKENS", 64)), temperature=float(os.environ.get("TEMP", 0.2)), top_p=1.0, stop=[""] ) or "" raw_answer = raw_answer.strip() log.info(f"[LLM] Raw answer repr (pass1): {repr(raw_answer)}") # Bersihkan tag dan ambil isi text = re.sub(r"]*>.*?", "", raw_answer, flags=re.DOTALL | re.IGNORECASE).strip() text = re.sub(r"]*>", "", text, flags=re.IGNORECASE).strip() m_final = re.search(r"\s*(.+)$", text, flags=re.IGNORECASE | re.DOTALL) cleaned = (m_final.group(1).strip() if m_final else re.sub(r"<[^>]+>", "", text).strip()) def _alpha_tokens(s: str) -> List[str]: return re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ]+", s or "") def _is_bad(s: str) -> bool: s2 = (s or "").strip() if not s2: return True if s2 in {"...", ".", "..", "…"}: return True toks = _alpha_tokens(s2) if len(toks) >= 4: return False if any(t.lower() in {"newton","n","kg","m","s"} for t in toks) and len(toks) >= 3: return False return True if _is_bad(cleaned): prompt_retry = ( prompt + "\n\nULANGI DENGAN TAAT FORMAT: " "Tulis satu kalimat faktual tanpa placeholder/ellipsis, " "mulai huruf kapital dan akhiri titik. " "Tulis hanya di dalam ...." ) raw_answer2 = generate( LLM, prompt_retry, max_tokens=int(os.environ.get("MAX_TOKENS", 64)), temperature=0.2, top_p=1.0, stop=[""] ) or "" raw_answer2 = raw_answer2.strip() log.info(f"[LLM] Raw answer repr (pass2): {repr(raw_answer2)}") text2 = re.sub(r"]*>.*?", "", raw_answer2, flags=re.DOTALL | re.IGNORECASE).strip() text2 = re.sub(r"]*>", "", text2, flags=re.IGNORECASE).strip() m_final2 = re.search(r"\s*(.+)$", text2, flags=re.IGNORECASE | re.DOTALL) cleaned2 = (m_final2.group(1).strip() if m_final2 else re.sub(r"<[^>]+>", "", text2).strip()) cleaned = cleaned2 or cleaned answer = cleaned except Exception as e: log.exception(f"[LLM] generate error: {e}") return jsonify({"ok": True, "answer": FALLBACK_TEXT}) # Ambil 1 kalimat pertama saja m = re.search(r"(.+?[.!?])(\s|$)", answer) answer = (m.group(1) if m else answer).strip() answer = strip_meta_sentence(answer) # Simpan history try: s = db() uid = session.get("user_id") s.add_all([ ChatHistory(user_id=uid, subject_key=subject_key, role="user", message=query), ChatHistory(user_id=uid, subject_key=subject_key, role="bot", message=answer), ]) s.commit() except Exception as e: log.exception(f"[DB] gagal simpan chat history: {e}") finally: try: s.close() except Exception: pass if not answer or len(answer) < 2: answer = FALLBACK_TEXT if ENABLE_PROFILING: log.info({ "latency_total": time.perf_counter() - t0, "subject": subject_key, "faiss_best": best, }) return jsonify({"ok": True, "answer": answer}) # ===== Admin ===== @app.route("/admin") @admin_required def admin_dashboard(): s = db() try: total_users = s.query(func.count(User.id)).scalar() or 0 total_active = s.query(func.count(User.id)).filter(User.is_active.is_(True)).scalar() or 0 total_admins = s.query(func.count(User.id)).filter(User.is_admin.is_(True)).scalar() or 0 total_msgs = s.query(func.count(ChatHistory.id)).scalar() or 0 finally: s.close() return render_template("admin_dashboard.html", total_users=total_users, total_active=total_active, total_admins=total_admins, total_msgs=total_msgs) @app.route("/admin/users") @admin_required def admin_users(): q = (request.args.get("q") or "").strip().lower() page = max(int(request.args.get("page", 1)), 1) per_page = min(max(int(request.args.get("per_page", 20)), 5), 100) s = db() try: base = s.query(User) if q: base = base.filter(or_(func.lower(User.username).like(f"%{q}%"), func.lower(User.email).like(f"%{q}%"))) total = base.count() users = base.order_by(User.id.asc()).offset((page - 1) * per_page).limit(per_page).all() user_ids = [u.id for u in users] or [-1] counts = dict(s.query(ChatHistory.user_id, func.count(ChatHistory.id)).filter(ChatHistory.user_id.in_(user_ids)).group_by(ChatHistory.user_id).all()) finally: s.close() return render_template("admin_users.html", users=users, counts=counts, q=q, page=page, per_page=per_page, total=total) @app.route("/admin/history") @admin_required def admin_history(): q = (request.args.get("q") or "").strip().lower() username = (request.args.get("username") or "").strip().lower() subject = (request.args.get("subject") or "").strip().lower() role = (request.args.get("role") or "").strip().lower() page = max(int(request.args.get("page", 1)), 1) per_page = min(max(int(request.args.get("per_page", 30)), 5), 200) s = db() try: base = (s.query(ChatHistory, User).join(User, User.id == ChatHistory.user_id)) if q: base = base.filter(func.lower(ChatHistory.message).like(f"%{q}%")) if username: base = base.filter(or_(func.lower(User.username) == username, func.lower(User.email) == username)) if subject: base = base.filter(func.lower(ChatHistory.subject_key) == subject) if role in ("user", "bot"): base = base.filter(ChatHistory.role == role) total = base.count() rows = base.order_by(ChatHistory.id.desc()).offset((page - 1) * per_page).limit(per_page).all() finally: s.close() items = [{ "id": r.ChatHistory.id, "username": r.User.username, "email": r.User.email, "subject": r.ChatHistory.subject_key, "role": r.ChatHistory.role, "message": r.ChatHistory.message, "timestamp": r.ChatHistory.timestamp, } for r in rows] return render_template("admin_history.html", items=items, subjects=SUBJECTS, q=q, username=username, subject=subject, role=role, page=page, per_page=per_page, total=total) def _is_last_admin(s: Session) -> bool: return (s.query(func.count(User.id)).filter(User.is_admin.is_(True)).scalar() or 0) <= 1 @app.route("/admin/users//delete", methods=["POST"]) @admin_required def admin_delete_user(user_id: int): s = db() try: me_id = session.get("user_id") user = s.query(User).filter_by(id=user_id).first() if not user: flash("User tidak ditemukan.", "error") return redirect(request.referrer or url_for("admin_users")) if user.id == me_id: flash("Tidak bisa menghapus akun yang sedang login.", "error") return redirect(request.referrer or url_for("admin_users")) if user.is_admin and _is_last_admin(s): flash("Tidak bisa menghapus admin terakhir.", "error") return redirect(request.referrer or url_for("admin_users")) s.query(ChatHistory).filter(ChatHistory.user_id == user.id).delete(synchronize_session=False) s.delete(user); s.commit() flash(f"User #{user_id} beserta seluruh riwayatnya telah dihapus.", "success") except Exception as e: s.rollback(); log.exception(f"[ADMIN] delete user error: {e}") flash("Gagal menghapus user.", "error") finally: s.close() return redirect(request.referrer or url_for("admin_users")) @app.route("/admin/users//history/clear", methods=["POST"]) @admin_required def admin_clear_user_history(user_id: int): s = db() try: exists = s.query(User.id).filter_by(id=user_id).first() if not exists: flash("User tidak ditemukan.", "error") return redirect(request.referrer or url_for("admin_history")) deleted = s.query(ChatHistory).filter(ChatHistory.user_id == user_id).delete(synchronize_session=False) s.commit() flash(f"Riwayat chat user #{user_id} dihapus ({deleted} baris).", "success") except Exception as e: s.rollback(); log.exception(f"[ADMIN] clear history error: {e}") flash("Gagal menghapus riwayat.", "error") finally: s.close() return redirect(request.referrer or url_for("admin_history")) @app.route("/admin/history//delete", methods=["POST"]) @admin_required def admin_delete_chat(chat_id: int): s = db() try: row = s.query(ChatHistory).filter_by(id=chat_id).first() if not row: flash("Baris riwayat tidak ditemukan.", "error") return redirect(request.referrer or url_for("admin_history")) s.delete(row); s.commit() flash(f"Riwayat chat #{chat_id} dihapus.", "success") except Exception as e: s.rollback(); log.exception(f"[ADMIN] delete chat error: {e}") flash("Gagal menghapus riwayat.", "error") finally: s.close() return redirect(request.referrer or url_for("admin_history")) # ========= ENTRY ========= if __name__ == "__main__": port = int(os.environ.get("PORT", 7860)) app.run(host="0.0.0.0", port=port, debug=False)