Spaces:
Running
Running
Upload 8 files
Browse files- .gitattributes +3 -0
- Rag-Pipeline/Vektor Database/Ipas/IPA_index.index +3 -0
- Rag-Pipeline/Vektor Database/Pancasila/PANCASILA_index.index +3 -0
- Rag-Pipeline/Vektor Database/Penjas/PENJAS_index.index +3 -0
- Rag-Pipeline/chunk.py +45 -0
- Rag-Pipeline/cleans.py +59 -0
- Rag-Pipeline/cleans2.py +123 -0
- Rag-Pipeline/embed.py +54 -0
- Rag-Pipeline/faissdb.py +19 -0
.gitattributes
CHANGED
|
@@ -51,3 +51,6 @@ Dataset/Penjas/PJOK_BS_KLS_III.pdf filter=lfs diff=lfs merge=lfs -text
|
|
| 51 |
Dataset/Penjas/PJOK_BS_KLS_IV.pdf filter=lfs diff=lfs merge=lfs -text
|
| 52 |
Dataset/Penjas/PJOK_BS_KLS_V.pdf filter=lfs diff=lfs merge=lfs -text
|
| 53 |
Dataset/Penjas/PJOK_BS_KLS_VI.pdf filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
Dataset/Penjas/PJOK_BS_KLS_IV.pdf filter=lfs diff=lfs merge=lfs -text
|
| 52 |
Dataset/Penjas/PJOK_BS_KLS_V.pdf filter=lfs diff=lfs merge=lfs -text
|
| 53 |
Dataset/Penjas/PJOK_BS_KLS_VI.pdf filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
Rag-Pipeline/Vektor[[:space:]]Database/Ipas/IPA_index.index filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
Rag-Pipeline/Vektor[[:space:]]Database/Pancasila/PANCASILA_index.index filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
Rag-Pipeline/Vektor[[:space:]]Database/Penjas/PENJAS_index.index filter=lfs diff=lfs merge=lfs -text
|
Rag-Pipeline/Vektor Database/Ipas/IPA_index.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:45fdf20d00c4cbe679a6d00584f35b95942552ea7b67137779fdcd48c65b5403
|
| 3 |
+
size 15818797
|
Rag-Pipeline/Vektor Database/Pancasila/PANCASILA_index.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:157e84a8342195a6e39eed3be5f244745fbf8221e92aba797c440067443e8afc
|
| 3 |
+
size 12943405
|
Rag-Pipeline/Vektor Database/Penjas/PENJAS_index.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:295a1bef4823cf5d42f24aa8be1259962640e8f6beba94a69cd542ef84e231f9
|
| 3 |
+
size 17891373
|
Rag-Pipeline/chunk.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 2 |
+
from langchain_core.documents import Document
|
| 3 |
+
import glob
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
folder_path = "D:\Webchatbot\Dataset\Penjas\Clean"
|
| 9 |
+
file_paths = glob.glob(os.path.join(folder_path, "*.txt"))
|
| 10 |
+
|
| 11 |
+
pages = []
|
| 12 |
+
for path in file_paths:
|
| 13 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 14 |
+
text = f.read()
|
| 15 |
+
pages.append(Document(page_content=text, metadata={"source": path}))
|
| 16 |
+
|
| 17 |
+
print(f" Total file terbaca: {len(file_paths)}")
|
| 18 |
+
|
| 19 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 20 |
+
chunk_size=300,
|
| 21 |
+
chunk_overlap=50,
|
| 22 |
+
separators=["\n\n", "\n", ".", " "]
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
documents = text_splitter.split_documents(pages)
|
| 26 |
+
all_texts = [doc.page_content for doc in documents]
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
output_dir = "D:\Webchatbot\Dataset\Penjas\Chunk"
|
| 30 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 31 |
+
|
| 32 |
+
output_path = os.path.join(output_dir, "penjas_chunks.json")
|
| 33 |
+
|
| 34 |
+
data_to_save = [
|
| 35 |
+
{"id": i + 1, "text": chunk}
|
| 36 |
+
for i, chunk in enumerate(all_texts)
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
| 40 |
+
json.dump(data_to_save, f, ensure_ascii=False, indent=2)
|
| 41 |
+
|
| 42 |
+
print(f"Hasil chunk disimpan ke: {os.path.abspath(output_path)}")
|
| 43 |
+
|
| 44 |
+
for i, chunk in enumerate(all_texts[:3]):
|
| 45 |
+
print(f"\n--- Chunk {i+1} ---\n{chunk}")
|
Rag-Pipeline/cleans.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
from pdfminer.high_level import extract_pages
|
| 4 |
+
from pdfminer.layout import LTTextContainer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def extract_and_clean_pdf(path: str, skip_pages: list[int] = None) -> list[str]:
|
| 8 |
+
skip_pages = skip_pages or []
|
| 9 |
+
cleaned_pages = []
|
| 10 |
+
|
| 11 |
+
for i, page_layout in enumerate(extract_pages(path), start=1):
|
| 12 |
+
if i in skip_pages:
|
| 13 |
+
print(f"Halaman {i} dilewati.")
|
| 14 |
+
continue
|
| 15 |
+
|
| 16 |
+
page_text = ""
|
| 17 |
+
for element in page_layout:
|
| 18 |
+
if isinstance(element, LTTextContainer):
|
| 19 |
+
page_text += element.get_text()
|
| 20 |
+
|
| 21 |
+
cleaned_text = clean_text(page_text)
|
| 22 |
+
cleaned_pages.append(cleaned_text)
|
| 23 |
+
|
| 24 |
+
print(f"\nTotal halaman diambil: {len(cleaned_pages)} halaman (dari {i} total halaman).")
|
| 25 |
+
return cleaned_pages
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def clean_text(text: str) -> str:
|
| 29 |
+
text = text.replace("\n", " ").replace("\t", " ")
|
| 30 |
+
text = re.sub(r'[^\x20-\x7EÀ-ÿ]', '', text)
|
| 31 |
+
text = re.sub(r'\s+', ' ', text)
|
| 32 |
+
text = re.sub(r'([a-z])([A-Z])', r'\1 \2', text)
|
| 33 |
+
text = re.sub(r'([a-z])([0-9])', r'\1 \2', text)
|
| 34 |
+
text = re.sub(r'([0-9])([a-zA-Z])', r'\1 \2', text)
|
| 35 |
+
text = re.sub(r'\s+([.,!?;:])', r'\1', text)
|
| 36 |
+
return text.strip()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def save_cleaned_text(cleaned_pages: list[str], output_path: str):
|
| 40 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
| 41 |
+
|
| 42 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
| 43 |
+
for page in cleaned_pages:
|
| 44 |
+
f.write(page + "\n\n")
|
| 45 |
+
|
| 46 |
+
print(f"File teks berhasil disimpan ke:\n{output_path}")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
pdf_path = "D:\Webchatbot\Dataset\Penjas\PJOK_BS_KLS_V.pdf"
|
| 51 |
+
output_txt = "D:\Webchatbot\Dataset\Penjas\Clean\Penjas Kelas V.txt"
|
| 52 |
+
|
| 53 |
+
halaman_dihapus = []+ list(range(1,15)) + list(range(188,208))
|
| 54 |
+
hasil = extract_and_clean_pdf(pdf_path, skip_pages=halaman_dihapus)
|
| 55 |
+
|
| 56 |
+
if hasil:
|
| 57 |
+
save_cleaned_text(hasil, output_txt)
|
| 58 |
+
else:
|
| 59 |
+
print("Tidak ada halaman yang diekstrak.")
|
Rag-Pipeline/cleans2.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os, re, sys
|
| 3 |
+
from typing import List, Optional, Set
|
| 4 |
+
import fitz
|
| 5 |
+
import pytesseract
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
|
| 9 |
+
PDF_PATH = r"D:\Webchatbot\Dataset\Penjas\PJOK_BS_KLS_VI.pdf"
|
| 10 |
+
OUTPUT_TXT = r"D:\Webchatbot\Dataset\Penjas\Clean\Penjas Kelas VI.txt"
|
| 11 |
+
SKIP_PAGES = list(range(1, 22)) + list(range(200, 211)) + list(range(213, 226))
|
| 12 |
+
TESSERACT_CMD = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
| 13 |
+
OCR_LANG = "ind+eng"
|
| 14 |
+
DPI = 300
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
if TESSERACT_CMD:
|
| 18 |
+
pytesseract.pytesseract.tesseract_cmd = TESSERACT_CMD
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
URL_RE = re.compile(
|
| 22 |
+
r"(https?://\S+|www\.\S+|\b\S+\.(?:com|org|net|edu|gov|go|id|co)\S*)",
|
| 23 |
+
flags=re.IGNORECASE,
|
| 24 |
+
)
|
| 25 |
+
BAB_LINE_RE = re.compile(
|
| 26 |
+
r"^\s*(?:bab|BAB)\s*(?:[0-9]+|[IVXLCDM]+)\s*(?:[:\-–—]\s*.*)?\s*$"
|
| 27 |
+
)
|
| 28 |
+
BAB_PREFIX_RE = re.compile(
|
| 29 |
+
r"^\s*(?:bab|BAB)\s*(?:[0-9]+|[IVXLCDM]+)\s*(?:[:\-–—]\s*)?",
|
| 30 |
+
flags=re.IGNORECASE,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
def clean_text(text: str) -> str:
|
| 34 |
+
text = URL_RE.sub("", text or "")
|
| 35 |
+
|
| 36 |
+
text = text.replace("\t", " ")
|
| 37 |
+
text = re.sub(r"[^\x09\x0A\x0D\x20-\x7EÀ-ÿ]", "", text)
|
| 38 |
+
|
| 39 |
+
cleaned_lines: List[str] = []
|
| 40 |
+
for raw_ln in text.splitlines():
|
| 41 |
+
ln = re.sub(r"\s+", " ", raw_ln).strip()
|
| 42 |
+
if not ln:
|
| 43 |
+
continue
|
| 44 |
+
|
| 45 |
+
if BAB_LINE_RE.match(ln):
|
| 46 |
+
continue
|
| 47 |
+
|
| 48 |
+
ln = BAB_PREFIX_RE.sub("", ln).strip()
|
| 49 |
+
|
| 50 |
+
if not ln:
|
| 51 |
+
continue
|
| 52 |
+
|
| 53 |
+
cleaned_lines.append(ln)
|
| 54 |
+
|
| 55 |
+
text_out = "\n".join(cleaned_lines).strip()
|
| 56 |
+
return text_out
|
| 57 |
+
|
| 58 |
+
def pixmap_to_pil(pix: fitz.Pixmap) -> Image.Image:
|
| 59 |
+
if pix.alpha:
|
| 60 |
+
pix = fitz.Pixmap(fitz.csRGB, pix)
|
| 61 |
+
img_bytes = pix.tobytes("png")
|
| 62 |
+
return Image.open(BytesIO(img_bytes))
|
| 63 |
+
|
| 64 |
+
def ocr_page(img: Image.Image, lang: str) -> str:
|
| 65 |
+
return clean_text(pytesseract.image_to_string(img, lang=lang))
|
| 66 |
+
|
| 67 |
+
def main():
|
| 68 |
+
if not os.path.exists(PDF_PATH):
|
| 69 |
+
print(f"PDF tidak ditemukan: {PDF_PATH}")
|
| 70 |
+
sys.exit(1)
|
| 71 |
+
|
| 72 |
+
doc = fitz.open(PDF_PATH)
|
| 73 |
+
total = doc.page_count
|
| 74 |
+
skip: Set[int] = set(SKIP_PAGES or [])
|
| 75 |
+
|
| 76 |
+
zoom = DPI / 72.0
|
| 77 |
+
mat = fitz.Matrix(zoom, zoom)
|
| 78 |
+
|
| 79 |
+
results: List[str] = []
|
| 80 |
+
skipped = 0
|
| 81 |
+
kept = 0
|
| 82 |
+
|
| 83 |
+
print(f"[*] Total halaman: {total} | DPI render: {DPI}")
|
| 84 |
+
for page_num in range(1, total + 1):
|
| 85 |
+
if page_num in skip:
|
| 86 |
+
skipped += 1
|
| 87 |
+
print(f"Halaman {page_num} dilewati.")
|
| 88 |
+
continue
|
| 89 |
+
|
| 90 |
+
page = doc.load_page(page_num - 1)
|
| 91 |
+
pix = page.get_pixmap(matrix=mat, alpha=False)
|
| 92 |
+
img = pixmap_to_pil(pix)
|
| 93 |
+
|
| 94 |
+
print(f"Halaman {page_num}: OCR …")
|
| 95 |
+
try:
|
| 96 |
+
txt = ocr_page(img, OCR_LANG)
|
| 97 |
+
except Exception as e:
|
| 98 |
+
print(f"[!] OCR gagal halaman {page_num}: {e}")
|
| 99 |
+
txt = ""
|
| 100 |
+
|
| 101 |
+
if txt.strip():
|
| 102 |
+
results.append(txt.strip())
|
| 103 |
+
kept += 1
|
| 104 |
+
else:
|
| 105 |
+
print(f"Halaman {page_num}: hasil kosong/pendek.")
|
| 106 |
+
|
| 107 |
+
doc.close()
|
| 108 |
+
|
| 109 |
+
os.makedirs(os.path.dirname(OUTPUT_TXT), exist_ok=True)
|
| 110 |
+
with open(OUTPUT_TXT, "w", encoding="utf-8") as f:
|
| 111 |
+
for t in results:
|
| 112 |
+
if not t.strip():
|
| 113 |
+
continue
|
| 114 |
+
f.write(t + "\n\n")
|
| 115 |
+
|
| 116 |
+
print("\nRingkasan:")
|
| 117 |
+
print(f"- Total halaman : {total}")
|
| 118 |
+
print(f"- Dilewati (skip) : {skipped}")
|
| 119 |
+
print(f"- Tersimpan (non-skip): {kept}")
|
| 120 |
+
print(f"[*] Output: {OUTPUT_TXT}")
|
| 121 |
+
|
| 122 |
+
if __name__ == "__main__":
|
| 123 |
+
main()
|
Rag-Pipeline/embed.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, json
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import AutoTokenizer, AutoModel
|
| 6 |
+
|
| 7 |
+
# ===== PATH =====
|
| 8 |
+
JSON_PATH = "D:\Webchatbot\Dataset\Penjas\Chunk\penjas_chunks.json"
|
| 9 |
+
OUTPUT_DIR = "D:\Webchatbot\Dataset\Penjas\Embedd"
|
| 10 |
+
OUTPUT_NAME = "penjas_embeddings.npy"
|
| 11 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 12 |
+
|
| 13 |
+
# ===== DEVICE =====
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
print(f"Running on device: {device}")
|
| 16 |
+
|
| 17 |
+
# ===== LOAD CHUNKS =====
|
| 18 |
+
with open(JSON_PATH, "r", encoding="utf-8") as f:
|
| 19 |
+
data = json.load(f)
|
| 20 |
+
texts = [item["text"] for item in data]
|
| 21 |
+
print(f"Total chunk: {len(texts)}")
|
| 22 |
+
|
| 23 |
+
# ===== MODEL =====
|
| 24 |
+
MODEL_NAME = "intfloat/multilingual-e5-large"
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 26 |
+
model = AutoModel.from_pretrained(MODEL_NAME).to(device).eval()
|
| 27 |
+
|
| 28 |
+
def mean_pooling(last_hidden_state, attention_mask):
|
| 29 |
+
mask = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 30 |
+
summed = (last_hidden_state * mask).sum(dim=1)
|
| 31 |
+
counts = mask.sum(dim=1).clamp(min=1e-9)
|
| 32 |
+
return summed / counts
|
| 33 |
+
|
| 34 |
+
@torch.no_grad()
|
| 35 |
+
def get_embeddings(texts, batch_size=32, max_length=512):
|
| 36 |
+
embs = []
|
| 37 |
+
for i in range(0, len(texts), batch_size):
|
| 38 |
+
batch = [f"passage: {t}" for t in texts[i:i+batch_size]]
|
| 39 |
+
inputs = tokenizer(batch, padding=True, truncation=True, max_length=max_length, return_tensors="pt").to(device)
|
| 40 |
+
outputs = model(**inputs)
|
| 41 |
+
pooled = mean_pooling(outputs.last_hidden_state, inputs["attention_mask"])
|
| 42 |
+
pooled = F.normalize(pooled, p=2, dim=1)
|
| 43 |
+
embs.append(pooled.cpu())
|
| 44 |
+
if (i // batch_size) % 10 == 0:
|
| 45 |
+
print(f"Processed: {i+len(batch)}/{len(texts)}")
|
| 46 |
+
return torch.cat(embs, dim=0)
|
| 47 |
+
|
| 48 |
+
embeddings = get_embeddings(texts, batch_size=32)
|
| 49 |
+
print(f"Embeddings shape: {embeddings.shape}")
|
| 50 |
+
|
| 51 |
+
# ===== SAVE NPY =====
|
| 52 |
+
output_path = os.path.join(OUTPUT_DIR, OUTPUT_NAME)
|
| 53 |
+
np.save(output_path, embeddings.numpy())
|
| 54 |
+
print(f"Embeddings disimpan ke: {output_path}")
|
Rag-Pipeline/faissdb.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import faiss
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
embeddings_path = "D:\Webchatbot\Dataset\Penjas\Embedd\penjas_embeddings.npy"
|
| 6 |
+
|
| 7 |
+
output_dir = "D:\Webchatbot\Rag-Pipeline\Vektor Database\Penjas"
|
| 8 |
+
|
| 9 |
+
embeddings_np = np.load(embeddings_path)
|
| 10 |
+
print(f"Embeddings shape: {embeddings_np.shape}")
|
| 11 |
+
|
| 12 |
+
dimension = embeddings_np.shape[1]
|
| 13 |
+
index = faiss.IndexFlatL2(dimension)
|
| 14 |
+
index.add(embeddings_np)
|
| 15 |
+
print(f"Total vectors di FAISS: {index.ntotal}")
|
| 16 |
+
|
| 17 |
+
faiss_index_path = os.path.join(output_dir, "PENJAS_index.index")
|
| 18 |
+
faiss.write_index(index, faiss_index_path)
|
| 19 |
+
print(f"FAISS index disimpan ke: {faiss_index_path}")
|