import streamlit as st import tensorflow as tf from tensorflow.keras.datasets import imdb from tensorflow.keras.preprocessing import sequence from tensorflow.keras.preprocessing.sequence import pad_sequences import numpy as np word_index = imdb.get_word_index() max_num_palabras = 2000 def reviewnueva(review, word_index, max_num_palabras): sequence = [] for word in review.split(): index = word_index.get(word.lower(), 0) if index < max_num_palabras: sequence.append(index) return sequence model = tf.keras.models.load_model("opiniones.h5") def predict_sentimiento(review): sequence = reviewnueva(review, word_index) prediccion = model.predict(sequence) if prediccion[0][0]>=0.5: sentimiento = "Positivo" else: sentimiento = "Negativo" return sentimiento st.title("Ingrese una review para poder calificar como positiva o negativa") review = st.text_area("Ingrese reseña aquí", height = 200) if st.button("Predecir sentimiento"): if review: sentimiento = predict_sentimiento(review) st.write(f'El sentimiento es: {sentimiento}') else: st.write(f'Ingrese una review')