from argparse import ArgumentParser import pickle import os import math import sacrebleu import numpy as np import torch from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline, set_seed, GPT2Tokenizer, GPT2Model, MarianTokenizer, MarianMTModel from constants import * from model import Model from util import save_checkpoint, ProgressMeter, AverageMeter, num_params def avg_formality(preds, model, tokenizer, device='cuda'): probs = [] for sent in preds: encoded_input = tokenizer.encode(sent, return_tensors='pt').to(device) lengths = torch.LongTensor([encoded_input.shape[1]]).to(device) scores = model(encoded_input, lengths=lengths) # batch x seq score = scores.flatten()[-1].item() probs.append(math.exp(score) / (1 + math.exp(score))) # sigmoided score = prob return np.mean(probs) if __name__=='__main__': parser = ArgumentParser() parser.add_argument('--pred', type=str) parser.add_argument('--ref', type=str, nargs='*', help='bleu refs') parser.add_argument('--ckpt', type=str, help='formality classifier') parser.add_argument('--dataset_info', type=str) parser.add_argument('--device', type=str, default='cuda', choices=['cpu', 'cuda']) parser.add_argument('--model_string', type=str, default='Helsinki-NLP/opus-mt-es-en') args = parser.parse_args() # refs = [['The dog bit the man.', 'It was not unexpected.', 'The man bit him first.'], # ['The dog had bit the man.', 'No one was surprised.', 'The man had bitten the dog.']] # sys = ['The dog bit the man.', "It wasn't surprising.", 'The man had just bitten him.'] print('num ref files', len(args.ref)) pred = [] with open(args.pred, 'r') as rf: for line in rf: pred.append(line.strip()) refs = [] for ref_file in args.ref: ref = [] with open(ref_file, 'r') as rf: for line in rf: ref.append(line.strip()) assert len(ref) == len(pred) refs.append(ref) bleu = sacrebleu.corpus_bleu(pred, refs) print('BLEU score:', bleu.score) with open(args.dataset_info, 'rb') as rf: dataset_info = pickle.load(rf) tokenizer = MarianTokenizer.from_pretrained(args.model_string) tokenizer.add_special_tokens({'pad_token': PAD_TOKEN}) pad_id = tokenizer.encode(PAD_TOKEN)[0] checkpoint = torch.load(args.ckpt, map_location=args.device) model_args = checkpoint['args'] conditioning_model = Model(model_args, pad_id, len(dataset_info.index2word)) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway conditioning_model.load_state_dict(checkpoint['state_dict']) conditioning_model = conditioning_model.to(args.device) conditioning_model.eval() print("=> loaded checkpoint '{}' (epoch {})" .format(args.ckpt, checkpoint['epoch'])) print('num params', num_params(conditioning_model)) print('avg formality prob according to model', avg_formality(pred, conditioning_model, tokenizer, device=args.device))