Spaces:
Build error
A newer version of the Gradio SDK is available:
5.7.1
RoBERTa: A Robustly Optimized BERT Pretraining Approach
https://arxiv.org/abs/1907.11692
Introduction
RoBERTa iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data. See the associated paper for more details.
What's New:
- December 2020: German model (GottBERT) is available: GottBERT.
- January 2020: Italian model (UmBERTo) is available from Musixmatch Research: UmBERTo.
- November 2019: French model (CamemBERT) is available: CamemBERT.
- November 2019: Multilingual encoder (XLM-RoBERTa) is available: XLM-R.
- September 2019: TensorFlow and TPU support via the transformers library.
- August 2019: RoBERTa is now supported in the pytorch-transformers library.
- August 2019: Added tutorial for finetuning on WinoGrande.
- August 2019: Added tutorial for pretraining RoBERTa using your own data.
Pre-trained models
Model | Description | # params | Download |
---|---|---|---|
roberta.base |
RoBERTa using the BERT-base architecture | 125M | roberta.base.tar.gz |
roberta.large |
RoBERTa using the BERT-large architecture | 355M | roberta.large.tar.gz |
roberta.large.mnli |
roberta.large finetuned on MNLI |
355M | roberta.large.mnli.tar.gz |
roberta.large.wsc |
roberta.large finetuned on WSC |
355M | roberta.large.wsc.tar.gz |
Results
GLUE (Wang et al., 2019) (dev set, single model, single-task finetuning)
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B |
---|---|---|---|---|---|---|---|---|
roberta.base |
87.6 | 92.8 | 91.9 | 78.7 | 94.8 | 90.2 | 63.6 | 91.2 |
roberta.large |
90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4 |
roberta.large.mnli |
90.2 | - | - | - | - | - | - | - |
SuperGLUE (Wang et al., 2019) (dev set, single model, single-task finetuning)
Model | BoolQ | CB | COPA | MultiRC | RTE | WiC | WSC |
---|---|---|---|---|---|---|---|
roberta.large |
86.9 | 98.2 | 94.0 | 85.7 | 89.5 | 75.6 | - |
roberta.large.wsc |
- | - | - | - | - | - | 91.3 |
SQuAD (Rajpurkar et al., 2018) (dev set, no additional data used)
Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1 |
---|---|---|
roberta.large |
88.9/94.6 | 86.5/89.4 |
RACE (Lai et al., 2017) (test set)
Model | Accuracy | Middle | High |
---|---|---|---|
roberta.large |
83.2 | 86.5 | 81.3 |
HellaSwag (Zellers et al., 2019) (test set)
Model | Overall | In-domain | Zero-shot | ActivityNet | WikiHow |
---|---|---|---|---|---|
roberta.large |
85.2 | 87.3 | 83.1 | 74.6 | 90.9 |
Commonsense QA (Talmor et al., 2019) (test set)
Model | Accuracy |
---|---|
roberta.large (single model) |
72.1 |
roberta.large (ensemble) |
72.5 |
Winogrande (Sakaguchi et al., 2019) (test set)
Model | Accuracy |
---|---|
roberta.large |
78.1 |
XNLI (Conneau et al., 2018) (TRANSLATE-TEST)
Model | en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
roberta.large.mnli |
91.3 | 82.91 | 84.27 | 81.24 | 81.74 | 83.13 | 78.28 | 76.79 | 76.64 | 74.17 | 74.05 | 77.5 | 70.9 | 66.65 | 66.81 |
Example usage
Load RoBERTa from torch.hub (PyTorch >= 1.1):
import torch
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large')
roberta.eval() # disable dropout (or leave in train mode to finetune)
Load RoBERTa (for PyTorch 1.0 or custom models):
# Download roberta.large model
wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
tar -xzvf roberta.large.tar.gz
# Load the model in fairseq
from fairseq.models.roberta import RobertaModel
roberta = RobertaModel.from_pretrained('/path/to/roberta.large', checkpoint_file='model.pt')
roberta.eval() # disable dropout (or leave in train mode to finetune)
Apply Byte-Pair Encoding (BPE) to input text:
tokens = roberta.encode('Hello world!')
assert tokens.tolist() == [0, 31414, 232, 328, 2]
roberta.decode(tokens) # 'Hello world!'
Extract features from RoBERTa:
# Extract the last layer's features
last_layer_features = roberta.extract_features(tokens)
assert last_layer_features.size() == torch.Size([1, 5, 1024])
# Extract all layer's features (layer 0 is the embedding layer)
all_layers = roberta.extract_features(tokens, return_all_hiddens=True)
assert len(all_layers) == 25
assert torch.all(all_layers[-1] == last_layer_features)
Use RoBERTa for sentence-pair classification tasks:
# Download RoBERTa already finetuned for MNLI
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
roberta.eval() # disable dropout for evaluation
# Encode a pair of sentences and make a prediction
tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.')
roberta.predict('mnli', tokens).argmax() # 0: contradiction
# Encode another pair of sentences
tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.')
roberta.predict('mnli', tokens).argmax() # 2: entailment
Register a new (randomly initialized) classification head:
roberta.register_classification_head('new_task', num_classes=3)
logprobs = roberta.predict('new_task', tokens) # tensor([[-1.1050, -1.0672, -1.1245]], grad_fn=<LogSoftmaxBackward>)
Batched prediction:
import torch
from fairseq.data.data_utils import collate_tokens
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
roberta.eval()
batch_of_pairs = [
['Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.'],
['Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.'],
['potatoes are awesome.', 'I like to run.'],
['Mars is very far from earth.', 'Mars is very close.'],
]
batch = collate_tokens(
[roberta.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1
)
logprobs = roberta.predict('mnli', batch)
print(logprobs.argmax(dim=1))
# tensor([0, 2, 1, 0])
Using the GPU:
roberta.cuda()
roberta.predict('new_task', tokens) # tensor([[-1.1050, -1.0672, -1.1245]], device='cuda:0', grad_fn=<LogSoftmaxBackward>)
Advanced usage
Filling masks:
RoBERTa can be used to fill <mask>
tokens in the input. Some examples from the
Natural Questions dataset:
roberta.fill_mask('The first Star wars movie came out in <mask>', topk=3)
# [('The first Star wars movie came out in 1977', 0.9504708051681519, ' 1977'), ('The first Star wars movie came out in 1978', 0.009986862540245056, ' 1978'), ('The first Star wars movie came out in 1979', 0.009574787691235542, ' 1979')]
roberta.fill_mask('Vikram samvat calender is official in <mask>', topk=3)
# [('Vikram samvat calender is official in India', 0.21878819167613983, ' India'), ('Vikram samvat calender is official in Delhi', 0.08547237515449524, ' Delhi'), ('Vikram samvat calender is official in Gujarat', 0.07556215673685074, ' Gujarat')]
roberta.fill_mask('<mask> is the common currency of the European Union', topk=3)
# [('Euro is the common currency of the European Union', 0.9456493854522705, 'Euro'), ('euro is the common currency of the European Union', 0.025748178362846375, 'euro'), ('€ is the common currency of the European Union', 0.011183084920048714, '€')]
Pronoun disambiguation (Winograd Schema Challenge):
RoBERTa can be used to disambiguate pronouns. First install spaCy and download the English-language model:
pip install spacy
python -m spacy download en_core_web_lg
Next load the roberta.large.wsc
model and call the disambiguate_pronoun
function. The pronoun should be surrounded by square brackets ([]
) and the
query referent surrounded by underscores (_
), or left blank to return the
predicted candidate text directly:
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.wsc', user_dir='examples/roberta/wsc')
roberta.cuda() # use the GPU (optional)
roberta.disambiguate_pronoun('The _trophy_ would not fit in the brown suitcase because [it] was too big.')
# True
roberta.disambiguate_pronoun('The trophy would not fit in the brown _suitcase_ because [it] was too big.')
# False
roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] feared violence.')
# 'The city councilmen'
roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] advocated violence.')
# 'demonstrators'
See the RoBERTA Winograd Schema Challenge (WSC) README for more details on how to train this model.
Extract features aligned to words:
By default RoBERTa outputs one feature vector per BPE token. You can instead
realign the features to match spaCy's word-level tokenization
with the extract_features_aligned_to_words
method. This will compute a
weighted average of the BPE-level features for each word and expose them in
spaCy's Token.vector
attribute:
doc = roberta.extract_features_aligned_to_words('I said, "hello RoBERTa."')
assert len(doc) == 10
for tok in doc:
print('{:10}{} (...)'.format(str(tok), tok.vector[:5]))
# <s> tensor([-0.1316, -0.0386, -0.0832, -0.0477, 0.1943], grad_fn=<SliceBackward>) (...)
# I tensor([ 0.0559, 0.1541, -0.4832, 0.0880, 0.0120], grad_fn=<SliceBackward>) (...)
# said tensor([-0.1565, -0.0069, -0.8915, 0.0501, -0.0647], grad_fn=<SliceBackward>) (...)
# , tensor([-0.1318, -0.0387, -0.0834, -0.0477, 0.1944], grad_fn=<SliceBackward>) (...)
# " tensor([-0.0486, 0.1818, -0.3946, -0.0553, 0.0981], grad_fn=<SliceBackward>) (...)
# hello tensor([ 0.0079, 0.1799, -0.6204, -0.0777, -0.0923], grad_fn=<SliceBackward>) (...)
# RoBERTa tensor([-0.2339, -0.1184, -0.7343, -0.0492, 0.5829], grad_fn=<SliceBackward>) (...)
# . tensor([-0.1341, -0.1203, -0.1012, -0.0621, 0.1892], grad_fn=<SliceBackward>) (...)
# " tensor([-0.1341, -0.1203, -0.1012, -0.0621, 0.1892], grad_fn=<SliceBackward>) (...)
# </s> tensor([-0.0930, -0.0392, -0.0821, 0.0158, 0.0649], grad_fn=<SliceBackward>) (...)
Evaluating the roberta.large.mnli
model:
Example python code snippet to evaluate accuracy on the MNLI dev_matched
set.
label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
ncorrect, nsamples = 0, 0
roberta.cuda()
roberta.eval()
with open('glue_data/MNLI/dev_matched.tsv') as fin:
fin.readline()
for index, line in enumerate(fin):
tokens = line.strip().split('\t')
sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
tokens = roberta.encode(sent1, sent2)
prediction = roberta.predict('mnli', tokens).argmax().item()
prediction_label = label_map[prediction]
ncorrect += int(prediction_label == target)
nsamples += 1
print('| Accuracy: ', float(ncorrect)/float(nsamples))
# Expected output: 0.9060
Finetuning
- Finetuning on GLUE
- Finetuning on custom classification tasks (e.g., IMDB)
- Finetuning on Winograd Schema Challenge (WSC)
- Finetuning on Commonsense QA (CQA)
Pretraining using your own data
See the tutorial for pretraining RoBERTa using your own data.
Citation
@article{liu2019roberta,
title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach},
author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and
Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and
Luke Zettlemoyer and Veselin Stoyanov},
journal={arXiv preprint arXiv:1907.11692},
year = {2019},
}