Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,14 @@
|
|
|
|
|
|
|
|
| 1 |
import spacy
|
| 2 |
import nltk
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
import re
|
| 6 |
from fuzzywuzzy import fuzz
|
| 7 |
-
from transformers import pipeline
|
| 8 |
from nltk.corpus import stopwords
|
| 9 |
from nltk.tokenize import word_tokenize
|
| 10 |
from nltk.stem import WordNetLemmatizer
|
| 11 |
-
import gemini
|
| 12 |
import fitz # PyMuPDF
|
| 13 |
|
| 14 |
# Initialize NLTK resources
|
|
@@ -26,8 +26,15 @@ except:
|
|
| 26 |
subprocess.run(["python3", "-m", "spacy", "download", "en_core_web_sm"])
|
| 27 |
nlp = spacy.load("en_core_web_sm")
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# Extract text from PDF using PyMuPDF
|
| 33 |
def extract_text_from_pdf(pdf_path):
|
|
@@ -72,11 +79,16 @@ def calculate_match_percentage(resume_text, job_desc_text):
|
|
| 72 |
match = fuzz.partial_ratio(resume_text, job_desc_text)
|
| 73 |
return match
|
| 74 |
|
| 75 |
-
# Use Gemini 1.5 to analyze text and extract job-related insights
|
| 76 |
def gemini_analysis(text):
|
| 77 |
-
"""Use Gemini 1.5 to analyze text and extract insights like roles and skills."""
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Process resumes and calculate match with job description
|
| 82 |
def process_uploaded_resumes(resume_files: list, job_desc: str):
|
|
@@ -98,7 +110,7 @@ def process_uploaded_resumes(resume_files: list, job_desc: str):
|
|
| 98 |
# Compare named entities between resume and job description
|
| 99 |
entity_match = len(resume_entities.intersection(job_desc_entities)) / len(job_desc_entities) * 100
|
| 100 |
|
| 101 |
-
# Use Gemini model to analyze job-related insights (optional)
|
| 102 |
gemini_match = gemini_analysis(resume_text)
|
| 103 |
|
| 104 |
# Calculate match percentage based on fuzzy matching
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import google.generativeai as genai
|
| 3 |
import spacy
|
| 4 |
import nltk
|
| 5 |
import gradio as gr
|
| 6 |
import pandas as pd
|
| 7 |
import re
|
| 8 |
from fuzzywuzzy import fuzz
|
|
|
|
| 9 |
from nltk.corpus import stopwords
|
| 10 |
from nltk.tokenize import word_tokenize
|
| 11 |
from nltk.stem import WordNetLemmatizer
|
|
|
|
| 12 |
import fitz # PyMuPDF
|
| 13 |
|
| 14 |
# Initialize NLTK resources
|
|
|
|
| 26 |
subprocess.run(["python3", "-m", "spacy", "download", "en_core_web_sm"])
|
| 27 |
nlp = spacy.load("en_core_web_sm")
|
| 28 |
|
| 29 |
+
# Fetch the Google API key from Hugging Face secrets
|
| 30 |
+
google_api_key = os.getenv("GOOGLE_API_KEY")
|
| 31 |
+
|
| 32 |
+
# Check if the key is being fetched correctly
|
| 33 |
+
if google_api_key is None:
|
| 34 |
+
raise ValueError("Google API Key is missing from environment variables.")
|
| 35 |
+
|
| 36 |
+
# Configure the Gemini API with the secret key
|
| 37 |
+
genai.configure(api_key=google_api_key)
|
| 38 |
|
| 39 |
# Extract text from PDF using PyMuPDF
|
| 40 |
def extract_text_from_pdf(pdf_path):
|
|
|
|
| 79 |
match = fuzz.partial_ratio(resume_text, job_desc_text)
|
| 80 |
return match
|
| 81 |
|
| 82 |
+
# Use Gemini 1.5 Flash to analyze text and extract job-related insights
|
| 83 |
def gemini_analysis(text):
|
| 84 |
+
"""Use Gemini 1.5 Flash model to analyze text and extract insights like roles and skills."""
|
| 85 |
+
response = genai.generate_text(
|
| 86 |
+
model="gemini-1.5-flash", # Use the Flash model here
|
| 87 |
+
temperature=0.7,
|
| 88 |
+
max_output_tokens=512,
|
| 89 |
+
input_text=text
|
| 90 |
+
)
|
| 91 |
+
return response['text']
|
| 92 |
|
| 93 |
# Process resumes and calculate match with job description
|
| 94 |
def process_uploaded_resumes(resume_files: list, job_desc: str):
|
|
|
|
| 110 |
# Compare named entities between resume and job description
|
| 111 |
entity_match = len(resume_entities.intersection(job_desc_entities)) / len(job_desc_entities) * 100
|
| 112 |
|
| 113 |
+
# Use Gemini 1.5 Flash model to analyze job-related insights (optional)
|
| 114 |
gemini_match = gemini_analysis(resume_text)
|
| 115 |
|
| 116 |
# Calculate match percentage based on fuzzy matching
|