import gradio as gr import torch import torch.nn.functional as F from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification import torchaudio import numpy as np # Define emotion labels emotion_labels = ["angry", "calm", "disgust", "fearful", "happy", "neutral", "sad", "surprised"] # Load model and processor model_name = "Dpngtm/wav2vec2-emotion-recognition" model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name) processor = Wav2Vec2Processor.from_pretrained(model_name, num_labels=len(emotion_labels)) # Define device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() # Set model to evaluation mode def recognize_emotion(audio): """ Predicts the emotion and confidence scores from an audio file. Max duration: 60 seconds """ try: if audio is None: return {emotion: 0.0 for emotion in emotion_labels} # Handle audio input audio_path = audio if isinstance(audio, str) else audio.name # Load and resample audio speech_array, sampling_rate = torchaudio.load(audio_path) # Check audio duration duration = speech_array.shape[1] / sampling_rate if duration > 60: # 60 seconds (1 minute) limit return { "Error": "Audio too long (max 1 minute)", **{emotion: 0.0 for emotion in emotion_labels} } # Resample if needed if sampling_rate != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000) speech_array = resampler(speech_array) # Convert to mono if stereo if speech_array.shape[0] > 1: speech_array = torch.mean(speech_array, dim=0, keepdim=True) # Normalize audio speech_array = speech_array / torch.max(torch.abs(speech_array)) # Convert to numpy and squeeze speech_array = speech_array.squeeze().numpy() # Process input inputs = processor( speech_array, sampling_rate=16000, return_tensors='pt', padding=True ) input_values = inputs.input_values.to(device) # Get predictions with torch.no_grad(): outputs = model(input_values) logits = outputs.logits # Get probabilities using softmax probs = F.softmax(logits, dim=-1)[0].cpu().numpy() # Get confidence scores for all emotions confidence_scores = { emotion: round(float(prob) * 100, 2) # Convert to percentage with 2 decimal places for emotion, prob in zip(emotion_labels, probs) } # Sort confidence scores by value sorted_scores = dict(sorted( confidence_scores.items(), key=lambda x: x[1], reverse=True )) return sorted_scores except Exception as e: return { "Error": str(e), **{emotion: 0.0 for emotion in emotion_labels} } # Create Gradio interface interface = gr.Interface( fn=recognize_emotion, inputs=gr.Audio( sources=["microphone", "upload"], type="filepath", label="Upload audio or record from microphone", max_length=60 # Set max length to 60 seconds in Gradio interface ), outputs=gr.Label( num_top_classes=len(emotion_labels), label="Emotion Predictions" ), title="Speech Emotion Recognition", description=""" ## Speech Emotion Recognition using Wav2Vec2 This model recognizes emotions from speech audio in the following categories: - Angry 😠 - Calm 😌 - Disgust 🤢 - Fearful 😨 - Happy 😊 - Neutral 😐 - Sad 😢 - Surprised 😲 ### Instructions: 1. Upload an audio file or record through the microphone 2. Wait for processing 3. View predicted emotions with confidence scores ### Notes: - Maximum audio length: 1 minute - Best results with clear speech and minimal background noise - Confidence scores are shown as percentages """, # Launch the app interface.launch( share=True, debug=True, server_name="0.0.0.0", server_port=7860 )