"""Flash attention monkey patch for mistral model""" # pylint: disable=duplicate-code import logging from typing import List, Optional, Tuple, Union import torch import transformers from einops import rearrange from flash_attn.bert_padding import pad_input, unpad_input from flash_attn.flash_attn_interface import ( # pylint: disable=ungrouped-imports flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func, flash_attn_varlen_qkvpacked_func, ) from transformers.modeling_outputs import BaseModelOutputWithPast from transformers.models.mistral.modeling_mistral import ( MistralAttention as OriginalMistralAttention, ) from transformers.models.mistral.modeling_mistral import ( MistralDecoderLayer as OriginalMistralDecoderLayer, ) from transformers.models.mistral.modeling_mistral import apply_rotary_pos_emb, repeat_kv from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids LOG = logging.getLogger("axolotl.monkeypatch.mistral") def replace_mistral_attn_with_flash_attn( packed: Optional[bool] = False, ): transformers.models.mistral.modeling_mistral.MistralModel._prepare_decoder_attention_mask = ( # pylint: disable=protected-access _prepare_decoder_attention_mask ) transformers.models.mistral.modeling_mistral.MistralAttention.forward = ( flashattn_forward ) if packed: transformers.models.mistral.modeling_mistral.MistralDecoderLayer = ( MistralDecoderLayer ) transformers.models.mistral.modeling_mistral.MistralModel.forward = ( mistral_model_forward ) @torch.jit.script def _make_sliding_window_causal_mask( bsz: int, tgt_len: int, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, sliding_window: int = 4096, ): """ Make causal mask used for sliding window attention """ tensor = torch.full( (tgt_len, tgt_len), fill_value=1, device=device, ) mask = torch.tril(tensor, diagonal=0) # make the mask banded to account for sliding window # NOTE: HF implementation is wrong as of 14-10-2023 for torch.triu, needs +1 mask = torch.triu(mask, diagonal=-sliding_window + 1) mask = torch.log(mask).to(dtype) if past_key_values_length > 0: mask = torch.cat( [ torch.zeros( tgt_len, past_key_values_length, dtype=dtype, device=device ), mask, ], dim=-1, ) return mask[None, None, :, :].expand( bsz, 1, tgt_len, tgt_len + past_key_values_length ) # Disable the transformation of the attention mask in LlamaModel as the flash attention # requires the attention mask to be the same as the key_padding_mask def _prepare_decoder_attention_mask( self, attention_mask, input_shape, inputs_embeds, past_key_values_length, sliding_window, ): # pylint: disable=unused-argument # [bsz, seq_len] if attention_mask is None or sliding_window is None: return attention_mask # NOTE: attention mask and sliding masks are only broadcastable in certain scenarios. # Without attention_mask.shape[0] == 1, error will trigger after eval loss but only when wandb is enabled. if input_shape[-1] > 1 and attention_mask.shape[0] == 1: sliding_window_mask = _make_sliding_window_causal_mask( bsz=input_shape[0], tgt_len=input_shape[1], dtype=inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, sliding_window=sliding_window, ) attention_mask = attention_mask + sliding_window_mask else: LOG.info("skipping sliding window mask, not broadcastable with attention mask") return attention_mask def flashattn_forward( self: OriginalMistralAttention, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view( bsz, q_len, self.num_heads, self.head_dim ).transpose(1, 2) key_states = key_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) value_states = value_states.view( bsz, q_len, self.num_key_value_heads, self.head_dim ).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids ) use_sliding_windows = ( getattr(self.config, "sliding_window") is not None and kv_seq_len > self.config.sliding_window ) if use_sliding_windows: window_size = (self.config.sliding_window, self.config.sliding_window) else: window_size = (-1, -1) if past_key_value is not None: # Activate slicing cache only if the config has a value `sliding_windows` attribute if ( hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window ): slicing_tokens = kv_seq_len - self.config.sliding_window past_key = past_key_value[0] past_value = past_key_value[1] past_key = past_key[:, :, slicing_tokens:, :].contiguous() past_value = past_value[:, :, slicing_tokens:, :].contiguous() if past_key.shape[-2] != self.config.sliding_window - 1: raise ValueError( f"past key much have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" f" {past_key.shape}" ) past_key_value = (past_key, past_value) if use_cache else None if past_key_value is not None: key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if self.training: # during training q,k,v always have same seqlen assert key_states.shape == query_states.shape is_causal = True else: # turn off FA causal mask after first inference autoregressive iteration # only on first autoregressive step q,k,v have same seqlen is_causal = key_states.shape == query_states.shape dropout_rate = 0.0 if not self.training else getattr(self, "attention_dropout", 0.0) if cu_seqlens is not None and max_seqlen is not None and cu_seqlens.dim() == 1: # special handling using sample packing qkv = torch.stack( [query_states, key_states, value_states], dim=2 ) # [bsz, nh, 3, q_len, hd] qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd] qkv = rearrange(qkv, "b s ... -> (b s) ...") output = flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, max_seqlen, dropout_p=dropout_rate, softmax_scale=None, causal=True, window_size=window_size, ) output = rearrange(output, "(b s) ... -> b s ...", b=bsz) elif query_states.shape == key_states.shape: query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) qkv_unpad, cu_seqlens_q, max_seqlen_q, _, output_pad_fn = generate_qkv( query_states, key_states, value_states, qkvpacked=True, # We have disabled _prepare_decoder_attention_mask in LlamaModel # the attention_mask should be the same as the key_padding_mask key_padding_mask=attention_mask, query_padding_mask=attention_mask[:, -query_states.size(1) :] if attention_mask is not None else None, ) output_unpad = flash_attn_varlen_qkvpacked_func( qkv_unpad, cu_seqlens_q, max_seqlen_q, dropout_p=dropout_rate, softmax_scale=None, causal=is_causal, window_size=window_size, ) output = output_pad_fn(output_unpad) else: query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) if attention_mask is None or attention_mask.all().item(): output = flash_attn_kvpacked_func( query_states, torch.stack([key_states, value_states], 2), dropout_p=dropout_rate, causal=is_causal, window_size=window_size, ) else: ( # pylint: disable=unbalanced-tuple-unpacking q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, _, _, output_pad_fn, ) = generate_qkv( query_states, key_states, value_states, kvpacked=True, key_padding_mask=attention_mask, query_padding_mask=attention_mask[:, -query_states.size(1) :] if attention_mask is not None else None, ) if q_unpad.dtype != kv_unpad.dtype: kv_unpad = kv_unpad.to(q_unpad.dtype) output_unpad = flash_attn_varlen_kvpacked_func( q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p=dropout_rate, softmax_scale=None, causal=is_causal, window_size=window_size, ) output = output_pad_fn(output_unpad) attn_output = output if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = rearrange(attn_output, "b s h d -> b s (h d)") attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # based on https://github.com/Dao-AILab/flash-attention/blob/364a5b/tests/test_flash_attn.py#L38 def generate_qkv( q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False, ): # pylint: disable=invalid-name,unnecessary-lambda-assignment """ Arguments: q: (batch_size, seqlen_q, nheads, d) k: (batch_size, seqlen_k, nheads_k, d) v: (batch_size, seqlen_k, nheads_k, d) query_padding_mask: (batch_size, seqlen), bool key_padding_mask: (batch_size, seqlen), bool """ assert not (kvpacked and qkvpacked) batch_size, seqlen_q, nheads, d = q.shape _, seqlen_k, nheads_k, _ = k.shape assert k.shape == (batch_size, seqlen_k, nheads_k, d) assert v.shape == (batch_size, seqlen_k, nheads_k, d) if query_padding_mask is not None: q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input( q, query_padding_mask ) output_pad_fn = lambda output_unpad: pad_input( # noqa: E731 output_unpad, indices_q, batch_size, seqlen_q ) else: q_unpad = rearrange(q, "b s h d -> (b s) h d") cu_seqlens_q = torch.arange( 0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device, ) max_seqlen_q = seqlen_q output_pad_fn = lambda output_unpad: rearrange( # noqa: E731 output_unpad, "(b s) h d -> b s h d", b=batch_size ) if key_padding_mask is not None: k_unpad, _, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask) v_unpad, _, _, _ = unpad_input(v, key_padding_mask) else: k_unpad = rearrange(k, "b s h d -> (b s) h d") v_unpad = rearrange(v, "b s h d -> (b s) h d") cu_seqlens_k = torch.arange( 0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device, ) max_seqlen_k = seqlen_k if qkvpacked: assert nheads == nheads_k qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1) qkv = torch.stack([q, k, v], dim=2) return (qkv_unpad, cu_seqlens_q, max_seqlen_q, qkv, output_pad_fn) if kvpacked: kv_unpad = torch.stack([k_unpad, v_unpad], dim=1) kv = torch.stack([k, v], dim=2) return ( q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, kv, output_pad_fn, ) return ( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, ) def mistral_model_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" ) if input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError( "You have to specify either decoder_input_ids or decoder_inputs_embeds" ) seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length cu_seqlens = None max_seqlen = None if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids) cu_seqlens = cu_seqlens.squeeze() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device, ) attention_mask = ( self._prepare_decoder_attention_mask( # pylint: disable=protected-access attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: transformers.logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = ( self._gradient_checkpointing_func( # pylint: disable=protected-access decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_value, output_attentions, None, cu_seqlens, max_seqlen, ) ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class MistralDecoderLayer(OriginalMistralDecoderLayer): """ patched version of MistralDecoderLayer to pass through the precalculated cu_seqlens """ def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[torch.Tensor] = None, ) -> Tuple[ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] ]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cu_seqlens (`torch.Tensor`, *optional*) cumulative sequence len when packing """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs