""" CLI to run training on a model """ import logging from pathlib import Path import fire import transformers from colorama import Fore from axolotl.cli import ( check_accelerate_default_config, check_user_token, load_cfg, load_datasets, print_axolotl_text_art, ) from axolotl.common.cli import TrainerCliArgs from axolotl.common.const import DEFAULT_DATASET_PREPARED_PATH from axolotl.train import train LOG = logging.getLogger("axolotl.cli.train") def do_cli(config: Path = Path("examples/"), **kwargs): # pylint: disable=duplicate-code print_axolotl_text_art() parsed_cfg = load_cfg(config, **kwargs) check_accelerate_default_config() check_user_token() parser = transformers.HfArgumentParser((TrainerCliArgs)) parsed_cli_args, _ = parser.parse_args_into_dataclasses( return_remaining_strings=True ) if parsed_cli_args.prepare_ds_only and not parsed_cfg.dataset_prepared_path: msg = ( Fore.RED + "--prepare_ds_only called without dataset_prepared_path set." + Fore.RESET ) LOG.warning(msg) parsed_cfg.dataset_prepared_path = DEFAULT_DATASET_PREPARED_PATH dataset_meta = load_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args) if parsed_cli_args.prepare_ds_only: return train(cfg=parsed_cfg, cli_args=parsed_cli_args, dataset_meta=dataset_meta) if __name__ == "__main__": fire.Fire(do_cli)