"""Prepare and train a model on a dataset. Can also infer from a model or merge lora""" import logging import os import signal import sys from dataclasses import dataclass from pathlib import Path from typing import Optional import torch # add src to the pythonpath so we don't need to pip install this from datasets import Dataset from optimum.bettertransformer import BetterTransformer from axolotl.common.cli import TrainerCliArgs from axolotl.logging_config import configure_logging from axolotl.utils.dict import DictDefault from axolotl.utils.models import load_model, load_tokenizer from axolotl.utils.trainer import setup_trainer project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) src_dir = os.path.join(project_root, "src") sys.path.insert(0, src_dir) configure_logging() LOG = logging.getLogger("axolotl.train") @dataclass class TrainDatasetMeta: """ dataclass to capture the dataset specific options for training """ train_dataset: Dataset eval_dataset: Optional[Dataset] = None total_num_steps: Optional[int] = None def train( *, cfg: DictDefault, cli_args: TrainerCliArgs, dataset_meta: TrainDatasetMeta, ): # load the tokenizer first LOG.info(f"loading tokenizer... {cfg.tokenizer_config or cfg.base_model_config}") tokenizer = load_tokenizer(cfg) train_dataset = dataset_meta.train_dataset eval_dataset = dataset_meta.eval_dataset total_num_steps = dataset_meta.total_num_steps # Load the model and tokenizer LOG.info("loading model and (optionally) peft_config...") model, peft_config = load_model(cfg, tokenizer, inference=cli_args.inference) safe_serialization = cfg.save_safetensors is True if cfg.resume_from_checkpoint is None and cfg.auto_resume_from_checkpoints: possible_checkpoints = [ str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*") ] if len(possible_checkpoints) > 0: sorted_paths = sorted( possible_checkpoints, key=lambda path: int(path.split("-")[-1]), ) cfg.resume_from_checkpoint = sorted_paths[-1] LOG.info( f"Using Auto-resume functionality to start with checkpoint at {cfg.resume_from_checkpoint}" ) resume_from_checkpoint = cfg.resume_from_checkpoint trainer = setup_trainer( cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps ) model.config.use_cache = False # go ahead and presave, so we have the adapter config available to inspect if peft_config: LOG.info(f"Pre-saving adapter config to {cfg.output_dir}") peft_config.save_pretrained(cfg.output_dir) # additionally presave the tokenizer and model configs if not Path(cfg.output_dir).is_dir(): os.makedirs(cfg.output_dir, exist_ok=True) tokenizer.save_pretrained(str(Path(cfg.output_dir))) model.config.save_pretrained(str(Path(cfg.output_dir))) # In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model if cfg.local_rank == 0: def terminate_handler(_, __, model): if cfg.flash_optimum: model = BetterTransformer.reverse(model) model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization) sys.exit(0) signal.signal( signal.SIGINT, lambda signum, frame: terminate_handler(signum, frame, model) ) LOG.info("Starting trainer...") if cfg.group_by_length: LOG.info("hang tight... sorting dataset for group_by_length") if cfg.flash_optimum: with torch.backends.cuda.sdp_kernel( enable_flash=True, enable_math=True, enable_mem_efficient=True ): trainer.train(resume_from_checkpoint=resume_from_checkpoint) else: trainer.train(resume_from_checkpoint=resume_from_checkpoint) LOG.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}") if cfg.relora_steps: if cfg.adapter == "lora" and not (cfg.load_in_4bit or cfg.load_in_8bit): model = model.merge_and_unload() else: # final model weights have already been saved by `ReLoRACallback.on_train_end` return model, tokenizer # TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading # only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file if cfg.fsdp: trainer.save_model(cfg.output_dir) elif cfg.local_rank == 0: if cfg.flash_optimum: model = BetterTransformer.reverse(model) model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization) return model, tokenizer