# Axolotl Axolotl is a tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. Features: - Train various Huggingface models such as llama, pythia, falcon, mpt - Supports fullfinetune, lora, qlora, relora, and gptq - Customize configurations using a simple yaml file or CLI overwrite - Load different dataset formats, use custom formats, or bring your own tokenized datasets - Integrated with xformer, flash attention, rope scaling, and multipacking - Works with single GPU or multiple GPUs via FSDP or Deepspeed - Easily run with Docker locally or on the cloud - Log results and optionally checkpoints to wandb - And more!
## Table of Contents - [Introduction](#axolotl) - [Supported Features](#axolotl-supports) - [Quickstart](#quickstart-) - [Installation](#installation) - [Docker Installation](#environment) - [Conda/Pip venv Installation](#condapip-venv) - [LambdaLabs Installation](#lambdalabs) - [Dataset](#dataset) - [How to Add Custom Prompts](#how-to-add-custom-prompts) - [How to Use Custom Pretokenized Dataset](#how-to-use-your-custom-pretokenized-dataset) - [Config](#config) - [Train](#train) - [Inference](#inference) - [Merge LORA to Base](#merge-lora-to-base) - [Common Errors](#common-errors-) - [Need Help?](#need-help-) - [Badge](#badge-) - [Community Showcase](#community-showcase) - [Contributing](#contributing-)
axolotl

Axolotl provides a unified repository for fine-tuning
a variety of AI models with ease

Go ahead and axolotl questions!!

pre-commit PyTest Status
## Axolotl supports | | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn | |----------|:----------|:-----|-------|------|-------------------|------------|--------------| | llama | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | Pythia | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ | | cerebras | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ | | btlm | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ | | mpt | ✅ | ❌ | ❓ | ❌ | ❌ | ❌ | ❓ | | falcon | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ | | gpt-j | ✅ | ✅ | ✅ | ❌ | ❌ | ❓ | ❓ | | XGen | ✅ | ❓ | ✅ | ❓ | ❓ | ❓ | ✅ | | phi | ✅ | ✅ | ✅ | ❓ | ❓ | ❓ | ❓ | ## Quickstart ⚡ Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task. **Requirements**: Python >=3.9 and Pytorch >=2.0. ```bash git clone https://github.com/OpenAccess-AI-Collective/axolotl cd axolotl pip3 install packaging pip3 install -e .[flash-attn] pip3 install -U git+https://github.com/huggingface/peft.git # finetune lora accelerate launch -m axolotl.cli.train examples/openllama-3b/lora.yml # inference accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \ --lora_model_dir="./lora-out" ``` ## Installation ### Environment - Docker ```bash docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.10-cu118-2.0.1 ``` - `winglian/axolotl-runpod:main-latest`: for runpod or use this [direct link](https://runpod.io/gsc?template=v2ickqhz9s&ref=6i7fkpdz) Or run on the current files for development: ```sh docker compose up -d ``` - Conda/Pip venv 1. Install python >=**3.9** 2. Install pytorch stable https://pytorch.org/get-started/locally/ 3. Install axolotl along with python dependencies ```bash pip3 install packaging pip3 install -e .[flash-attn] ``` - LambdaLabs
Click to Expand 1. Install python ```bash sudo apt update sudo apt install -y python3.9 sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1 sudo update-alternatives --config python # pick 3.9 if given option python -V # should be 3.9 ``` 2. Install pip ```bash wget https://bootstrap.pypa.io/get-pip.py python get-pip.py ``` 3. Install torch ```bash pip3 install -U torch --index-url https://download.pytorch.org/whl/cu118 ``` 4. Axolotl ```bash git clone https://github.com/OpenAccess-AI-Collective/axolotl cd axolotl pip3 install packaging pip3 install -e .[flash-attn] pip3 install protobuf==3.20.3 pip3 install -U --ignore-installed requests Pillow psutil scipy ``` 5. Set path ```bash export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH ```
- Windows: Please use WSL or Docker! ### Dataset Axolotl supports a variety of dataset formats. Below are some of the formats you can use. Have dataset(s) in one of the following format (JSONL recommended): - `alpaca`: instruction; input(optional) ```json {"instruction": "...", "input": "...", "output": "..."} ``` - `sharegpt:chat`: conversations where `from` is `human`/`gpt` ```json {"conversations": [{"from": "...", "value": "..."}]} ``` - `completion`: raw corpus ```json {"text": "..."} ```
See other formats - `jeopardy`: question and answer ```json {"question": "...", "category": "...", "answer": "..."} ``` - `oasst`: instruction ```json {"INSTRUCTION": "...", "RESPONSE": "..."} ``` - `gpteacher`: instruction; input(optional) ```json {"instruction": "...", "input": "...", "response": "..."} ``` - `reflection`: instruction with reflect; input(optional) ```json {"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."} ``` - `explainchoice`: question, choices, (solution OR explanation) ```json {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} ``` - `concisechoice`: question, choices, (solution OR explanation) ```json {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."} ``` - `summarizetldr`: article and summary ```json {"article": "...", "summary": "..."} ``` - `alpaca_chat`: basic instruct for alpaca chat ```json {"instruction": "...", "input": "...", "response": "..."} ``` - `alpaca_chat.load_qa`: question and answer for alpaca chat ```json {"question": "...", "answer": "..."} ``` - `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers ```json {"instruction": "...", "input": "...", "response": "..."} ``` - `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai ```json {"message_1": "...", "message_2": "..."} ``` - `alpaca_w_system.load_open_orca`: support for open orca datasets with included system prompts, instruct ```json {"system_prompt": "...", "question": "...", "response": "..."} ``` - `context_qa`: in context question answering from an article ```json {"article": "...", "question": "...", "answer": "..."} ``` - `context_qa.load_404`: in context question answering from an article, with default response for no answer from context ```json {"article": "...", "unanswerable_question": "..."} ``` - `creative_acr.load_answer`: instruction and revision ```json {"instruction": "...", "revision": "..."} ``` - `creative_acr.load_critique`: critique ```json {"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."} ``` - `creative_acr.load_revise`: critique and revise ```json {"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."} ``` - `pygmalion`: pygmalion ```json {"conversations": [{"role": "...", "value": "..."}]} ``` - `metharme`: instruction, adds additional eos tokens ```json {"prompt": "...", "generation": "..."} ``` - `sharegpt_simple.load_role`: conversations where `role` is used instead of `from` ```json {"conversations": [{"role": "...", "value": "..."}]} ``` - `sharegpt_simple.load_guanaco`: conversations where `from` is `prompter`/`assistant` instead of default sharegpt ```json {"conversations": [{"from": "...", "value": "..."}]} ``` - `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny ```json {"conversations": [{"title": "...", "text": "...", "explanation": "..."}]} ```
#### How to add custom prompts Using yaml. Example: ```yaml datasets: - path: repo type: system_prompt: "" no_input_format: |- User: {instruction}<|end_of_turn|> Assistant: format: |- User: {instruction} {input}<|end_of_turn|> Assistant: ``` Using file: 1. Add your method to a file in [prompt_strategies](src/axolotl/prompt_strategies). Please see other files as example. 2. Use your custom file name as the dataset type `.load_`. #### How to use your custom pretokenized dataset - Do not pass a `type:` - Dataset must contain `input_ids`, `attention_mask`, `labels` in columns ### Config See [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are: - model ```yaml base_model: ./llama-7b-hf # local or huggingface repo ``` Note: The code will load the right architecture. - dataset ```yaml sequence_len: 2048 # max token length for prompt # huggingface repo datasets: - path: vicgalle/alpaca-gpt4 type: alpaca # format from earlier # huggingface repo with specific configuration/subset datasets: - path: EleutherAI/pile name: enron_emails type: completion # format from earlier field: text # Optional[str] default: text, field to use for completion data # huggingface repo with multiple named configurations/subsets datasets: - path: bigcode/commitpackft name: - ruby - python - typescript type: ... # unimplemented custom format # local datasets: - path: data.jsonl # or json ds_type: json # see other options below type: alpaca ``` - loading ```yaml load_in_4bit: true load_in_8bit: true bf16: true # require >=ampere fp16: true tf32: true # require >=ampere bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision) float16: true # use instead of fp16 when you don't want AMP ``` Note: Repo does not do 4-bit quantization. - lora ```yaml adapter: lora # qlora or leave blank for full finetune lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - q_proj - v_proj ```
All yaml options ```yaml # this is the huggingface model that contains *.pt, *.safetensors, or *.bin files # this can also be a relative path to a model on disk base_model: ./llama-7b-hf # you can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc) base_model_ignore_patterns: # if the base_model repo on hf hub doesn't include configuration .json files, # you can set that here, or leave this empty to default to base_model base_model_config: ./llama-7b-hf # you can specify to choose a specific model revision from huggingface hub model_revision: # Optional tokenizer configuration override in case you want to use a different tokenizer # than the one defined in the base model tokenizer_config: # If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too model_type: AutoModelForCausalLM # Corresponding tokenizer for the model AutoTokenizer is a good choice tokenizer_type: AutoTokenizer # Trust remote code for untrusted source trust_remote_code: # use_fast option for tokenizer loading from_pretrained, default to True tokenizer_use_fast: # Whether to use the legacy tokenizer setting, defaults to True tokenizer_legacy: # resize the model embeddings when new tokens are added to multiples of 32 # this is reported to improve training speed on some models resize_token_embeddings_to_32x: # whether you are training a 4-bit GPTQ quantized model gptq: true gptq_groupsize: 128 # group size gptq_model_v1: false # v1 or v2 # this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer load_in_8bit: true # use bitsandbytes 4 bit load_in_4bit: # Use CUDA bf16 bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere # Use CUDA fp16 fp16: true # Use CUDA tf32 tf32: true # require >=ampere # No AMP (automatic mixed precision) bfloat16: true # require >=ampere float16: true # a list of one or more datasets to finetune the model with datasets: # hf dataset repo | "json" for local dataset, make sure to fill data_files - path: vicgalle/alpaca-gpt4 # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection] type: alpaca # format | format: (chat/instruct) | .load_ ds_type: # Optional[str] (json|arrow|parquet) defines the datatype when path is a file data_files: # path to source data files shards: # number of shards to split data into name: # name of dataset configuration to load # custom user prompt - path: repo type: # the below are defaults. only set what's needed. system_prompt: "" field_system: system field_instruction: instruction field_output: input # customizable to be single line or multi-line system_format: "{system}" # 'format' can include {input} format: |- User: {instruction} {input} Assistant: # 'no_input_format' cannot include {input} no_input_format: "{instruction} " # for completions datsets, uses the provided field if not `text` field: # axolotl attempts to save the dataset as an arrow after packing the data together so # subsequent training attempts load faster, relative path dataset_prepared_path: data/last_run_prepared # push prepared dataset to hub push_dataset_to_hub: # repo path # push checkpoints to hub hub_model_id: # repo path to push finetuned model # how to push checkpoints to hub # https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy hub_strategy: # whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets # required to be true when used in combination with `push_dataset_to_hub` hf_use_auth_token: # boolean # How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval. val_set_size: 0.04 # Num shards for whole dataset dataset_shard_num: # Index of shard to use for whole dataset dataset_shard_idx: # the maximum length of an input to train with, this should typically be less than 2048 # as most models have a token/context limit of 2048 sequence_len: 2048 # pad inputs so each step uses constant sized buffers # this will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently pad_to_sequence_len: # max sequence length to concatenate training samples together up to # inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning # FutureWarning: This will soon be DEPRECATED max_packed_sequence_len: 1024 # use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true' sample_packing: # you can set these packing optimizations AFTER starting a training at least once. # The trainer will provide recommended values for these values. sample_packing_eff_est: total_num_tokens: # if you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model adapter: lora # if you already have a lora model trained that you want to load, put that here # lora hyperparameters lora_model_dir: lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - q_proj - v_proj # - k_proj # - o_proj # - gate_proj # - down_proj # - up_proj lora_target_linear: # if true, will target all linear layers lora_modules_to_save: # - embed_tokens # - lm_head lora_out_dir: lora_fan_in_fan_out: false # ReLoRA configuration # must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed relora_steps: # number of steps per ReLoRA restart relora_warmup_steps: # number of per-restart warmup steps relora_cpu_offload: # true to perform lora weight merges on cpu during restarts, for modest gpu memory savings # wandb configuration if you're using it wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb wandb_project: # your wandb project name wandb_entity: # a wandb Team name if using a Team wandb_watch: wandb_run_id: # set the name of your wandb run wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training # where to save the finished model to output_dir: ./completed-model # whether to use torch.compile and which backend to use torch_compile: # bool torch_compile_backend: # Optional[str] # training hyperparameters gradient_accumulation_steps: 1 micro_batch_size: 2 eval_batch_size: 2 num_epochs: 3 warmup_steps: 100 learning_rate: 0.00003 lr_quadratic_warmup: logging_steps: save_strategy: # set to `no` to skip checkpoint saves save_steps: # leave empty to save at each epoch eval_steps: # leave empty to eval at each epoch save_total_limit: # checkpoints saved at a time max_steps: eval_table_size: # approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0 eval_table_max_new_tokens: # total number of tokens generated for predictions sent to wandb. Default is 128 # save model as safetensors (require safetensors package) save_safetensors: # whether to mask out or include the human's prompt from the training labels train_on_inputs: false # group similarly sized data to minimize padding # may be slower to start, as it must download and sort the entire dataset # note that training loss may have an oscillating pattern with this enabled group_by_length: false # Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing gradient_checkpointing: false # stop training after this many evaluation losses have increased in a row # https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback early_stopping_patience: 3 # specify a scheduler and kwargs to use with the optimizer lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine lr_scheduler_kwargs: # for one_cycle optim lr_div_factor: # learning rate div factor # for log_sweep optim log_sweep_min_lr: log_sweep_max_lr: # specify optimizer # Valid values are driven by the Transformers OptimizerNames class, see: # https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134 # # Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of # torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used # in the examples/ for your model and fine-tuning use case. # # Valid values for 'optimizer' include: # - adamw_hf # - adamw_torch # - adamw_torch_fused # - adamw_torch_xla # - adamw_apex_fused # - adafactor # - adamw_anyprecision # - sgd # - adagrad # - adamw_bnb_8bit # - lion_8bit # - lion_32bit # - paged_adamw_32bit # - paged_adamw_8bit # - paged_lion_32bit # - paged_lion_8bit optimizer: # specify weight decay weight_decay: # adamw hyperparams adam_beta1: adam_beta2: adam_epsilon: # Gradient clipping max norm max_grad_norm: # whether to bettertransformers flash_optimum: # whether to use xformers attention patch https://github.com/facebookresearch/xformers: xformers_attention: # whether to use flash attention patch https://github.com/Dao-AILab/flash-attention: flash_attention: # whether to use scaled-dot-product attention # https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html sdp_attention: # Landmark attention (only llama) landmark_attention: # xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py # llama only xpos_rope: # RoPE Scaling https://github.com/huggingface/transformers/pull/24653 rope_scaling: type: # linear | dynamic factor: # float # resume from a specific checkpoint dir resume_from_checkpoint: # if resume_from_checkpoint isn't set and you simply want it to start where it left off # be careful with this being turned on between different models auto_resume_from_checkpoints: false # don't mess with this, it's here for accelerate and torchrun local_rank: # add or change special tokens special_tokens: # bos_token: "" # eos_token: "" # unk_token: "" # add extra tokens tokens: # FSDP fsdp: fsdp_config: # Deepspeed config path deepspeed: # Advanced DDP Arguments ddp_timeout: ddp_bucket_cap_mb: ddp_broadcast_buffers: # Path to torch distx for optim 'adamw_anyprecision' torchdistx_path: # Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize pretraining_dataset: # Debug mode debug: # Seed seed: # Allow overwrite yml config using from cli strict: ```
### Train Run ```bash accelerate launch -m axolotl.cli.train your_config.yml ``` #### Multi-GPU You can optionally pre-tokenize dataset with the following before finetuning: ```bash CUDA_VISIBLE_DEVICES="" accelerate launch -m axolotl.cli.train your_config.yml --prepare_ds_only ``` ##### Config - llama FSDP ```yaml fsdp: - full_shard - auto_wrap fsdp_config: fsdp_offload_params: true fsdp_state_dict_type: FULL_STATE_DICT fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer ``` - llama Deepspeed ```yaml deepspeed: deepspeed/zero3.json ``` ##### Weights & Biases Logging - wandb options ```yaml wandb_mode: wandb_project: wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: ``` ### Inference Pass the appropriate flag to the train command: - Pretrained LORA: ```bash python -m axolotl.cli.inference examples/your_config.yml --lora_model_dir="./lora-output-dir" ``` - Full weights finetune: ```bash python -m axolotl.cli.inference examples/your_config.yml --base_model="./completed-model" ``` - Full weights finetune w/ a prompt from a text file: ```bash cat /tmp/prompt.txt | python -m axolotl.cli.inference examples/your_config.yml \ --base_model="./completed-model" --prompter=None --load_in_8bit=True ``` ### Merge LORA to base Add below flag to train command above ```bash python3 -m axolotl.cli.merge_lora examples/your_config.yml --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False ``` If you run out of CUDA memory, you can try to merge in system RAM with ```bash CUDA_VISIBLE_DEVICES="" python3 -m axolotl.cli.merge_lora ... ``` ## Common Errors 🧰 > If you encounter a 'Cuda out of memory' error, it means your GPU ran out of memory during the training process. Here's how to resolve it: Please reduce any below - `micro_batch_size` - `eval_batch_size` - `gradient_accumulation_steps` - `sequence_len` > `failed (exitcode: -9)` Usually means your system has run out of system memory. Similarly, you should consider reducing the same settings as when you run out of VRAM. Additionally, look into upgrading your system RAM which should be simpler than GPU upgrades. > RuntimeError: expected scalar type Float but found Half Try set `fp16: true` > NotImplementedError: No operator found for `memory_efficient_attention_forward` ... Try to turn off xformers. > accelerate config missing It's safe to ignore it. > NCCL Timeouts during training See the [NCCL](docs/nccl.md) guide. ## Need help? 🙋♂️ Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you ## Badge ❤🏷️ Building something cool with Axolotl? Consider adding a badge to your model card. ```markdown [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ``` [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## Community Showcase Check out some of the projects and models that have been built using Axolotl! Have a model you'd like to add to our Community Showcase? Open a PR with your model. Open Access AI Collective - [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b) - [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b) - [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat) PocketDoc Labs - [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA) ## Contributing 🤝 Please read the [contributing guide](./.github/CONTRIBUTING.md) Bugs? Please check the [open issues](https://github.com/OpenAccess-AI-Collective/axolotl/issues/bug) else create a new Issue. PRs are **greatly welcome**! Please run below to setup env ```bash pip3 install -r requirements-dev.txt -r requirements-tests.txt pre-commit install # test pytest tests/ ```