"""Prepare and train a model on a dataset. Can also infer from a model or merge lora""" import importlib import logging import os import random import sys from pathlib import Path from typing import Any, Dict, List, Optional, Union import torch import yaml # add src to the pythonpath so we don't need to pip install this from accelerate.commands.config import config_args from art import text2art from huggingface_hub import HfApi from huggingface_hub.utils import LocalTokenNotFoundError from transformers import GenerationConfig, TextStreamer from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer from axolotl.logging_config import configure_logging from axolotl.train import TrainDatasetMeta from axolotl.utils.config import normalize_config, validate_config from axolotl.utils.data import prepare_dataset from axolotl.utils.dict import DictDefault from axolotl.utils.distributed import is_main_process from axolotl.utils.models import load_tokenizer from axolotl.utils.tokenization import check_dataset_labels from axolotl.utils.wandb_ import setup_wandb_env_vars project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) src_dir = os.path.join(project_root, "src") sys.path.insert(0, src_dir) configure_logging() LOG = logging.getLogger("axolotl.scripts") os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" def print_axolotl_text_art(suffix=None): font = "nancyj" ascii_text = " axolotl" if suffix: ascii_text += f" x {suffix}" ascii_art = text2art(" axolotl", font=font) if is_main_process(): print(ascii_art) def get_multi_line_input() -> Optional[str]: print("Give me an instruction (Ctrl + D to submit): ") instruction = "" for line in sys.stdin: instruction += line # pylint: disable=consider-using-join # instruction = pathlib.Path("/proc/self/fd/0").read_text() return instruction def do_merge_lora( *, cfg: DictDefault, cli_args: TrainerCliArgs, ): model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args) safe_serialization = cfg.save_safetensors is True LOG.info("running merge of LoRA with base model") model = model.merge_and_unload() model.to(dtype=torch.float16) if cfg.local_rank == 0: LOG.info(f"saving merged model to: {str(Path(cfg.output_dir) / 'merged')}") model.save_pretrained( str(Path(cfg.output_dir) / "merged"), safe_serialization=safe_serialization, ) tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged")) def do_inference( *, cfg: DictDefault, cli_args: TrainerCliArgs, ): model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args) prompter = cli_args.prompter default_tokens = {"unk_token": "", "bos_token": "", "eos_token": ""} for token, symbol in default_tokens.items(): # If the token isn't already specified in the config, add it if not (cfg.special_tokens and token in cfg.special_tokens): tokenizer.add_special_tokens({token: symbol}) prompter_module = None if prompter: prompter_module = getattr( importlib.import_module("axolotl.prompters"), prompter ) if cfg.landmark_attention: from axolotl.monkeypatch.llama_landmark_attn import set_model_mem_id set_model_mem_id(model, tokenizer) model.set_mem_cache_args( max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None ) model = model.to(cfg.device) while True: print("=" * 80) # support for multiline inputs instruction = get_multi_line_input() if not instruction: return if prompter_module: prompt: str = next( prompter_module().build_prompt(instruction=instruction.strip("\n")) ) else: prompt = instruction.strip() batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) print("=" * 40) model.eval() with torch.no_grad(): generation_config = GenerationConfig( repetition_penalty=1.1, max_new_tokens=1024, temperature=0.9, top_p=0.95, top_k=40, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, do_sample=True, use_cache=True, return_dict_in_generate=True, output_attentions=False, output_hidden_states=False, output_scores=False, ) streamer = TextStreamer(tokenizer) generated = model.generate( inputs=batch["input_ids"].to(cfg.device), generation_config=generation_config, streamer=streamer, ) print("=" * 40) print(tokenizer.decode(generated["sequences"].cpu().tolist()[0])) def choose_config(path: Path): yaml_files = list(path.glob("*.yml")) if not yaml_files: raise ValueError( "No YAML config files found in the specified directory. Are you using a .yml extension?" ) if len(yaml_files) == 1: print(f"Using default YAML file '{yaml_files[0]}'") return yaml_files[0] print("Choose a YAML file:") for idx, file in enumerate(yaml_files): print(f"{idx + 1}. {file}") chosen_file = None while chosen_file is None: try: choice = int(input("Enter the number of your choice: ")) if 1 <= choice <= len(yaml_files): chosen_file = yaml_files[choice - 1] else: print("Invalid choice. Please choose a number from the list.") except ValueError: print("Invalid input. Please enter a number.") return chosen_file def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool: return not any(el in list2 for el in list1) def load_cfg(config: Path = Path("examples/"), **kwargs): if Path(config).is_dir(): config = choose_config(config) # load the config from the yaml file with open(config, encoding="utf-8") as file: cfg: DictDefault = DictDefault(yaml.safe_load(file)) cfg.axolotl_config_path = config # if there are any options passed in the cli, if it is something that seems valid from the yaml, # then overwrite the value cfg_keys = cfg.keys() for k, _ in kwargs.items(): # if not strict, allow writing to cfg even if it's not in the yml already if k in cfg_keys or not cfg.strict: # handle booleans if isinstance(cfg[k], bool): cfg[k] = bool(kwargs[k]) else: cfg[k] = kwargs[k] validate_config(cfg) normalize_config(cfg) setup_wandb_env_vars(cfg) return cfg def load_datasets( *, cfg: DictDefault, cli_args: TrainerCliArgs, ) -> TrainDatasetMeta: tokenizer = load_tokenizer(cfg) train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer) if cli_args.debug or cfg.debug: LOG.info("check_dataset_labels...") check_dataset_labels( train_dataset.select( [ random.randrange(0, len(train_dataset) - 1) # nosec for _ in range(cli_args.debug_num_examples) ] ), tokenizer, num_examples=cli_args.debug_num_examples, text_only=cli_args.debug_text_only, ) return TrainDatasetMeta( train_dataset=train_dataset, eval_dataset=eval_dataset, total_num_steps=total_num_steps, ) def check_accelerate_default_config(): if Path(config_args.default_yaml_config_file).exists(): LOG.warning( f"accelerate config file found at {config_args.default_yaml_config_file}. This can lead to unexpected errors" ) def check_user_token(): # Verify if token is valid api = HfApi() try: user_info = api.whoami() return bool(user_info) except LocalTokenNotFoundError: LOG.warning( "Error verifying HuggingFace token. Remember to log in using `huggingface-cli login` and get your access token from https://huggingface.co/settings/tokens if you want to use gated models or datasets." ) return False