refactor utils.data module for line count linter (#1476)
Browse files
src/axolotl/utils/data/__init__.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Data processing modules
|
| 3 |
+
"""
|
| 4 |
+
from axolotl.utils.data.dpo import load_prepare_dpo_datasets # noqa: F401
|
| 5 |
+
from axolotl.utils.data.pretraining import ( # noqa: F401
|
| 6 |
+
encode_pretraining,
|
| 7 |
+
wrap_pretraining_dataset,
|
| 8 |
+
)
|
| 9 |
+
from axolotl.utils.data.sft import ( # noqa: F401
|
| 10 |
+
get_dataset_wrapper,
|
| 11 |
+
load_prepare_datasets,
|
| 12 |
+
load_tokenized_prepared_datasets,
|
| 13 |
+
prepare_dataset,
|
| 14 |
+
)
|
| 15 |
+
from axolotl.utils.data.utils import md5 # noqa: F401
|
src/axolotl/utils/data/dpo.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""data handling specific to DPO"""
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Any, List
|
| 6 |
+
|
| 7 |
+
import yaml
|
| 8 |
+
from datasets import concatenate_datasets, load_dataset, load_from_disk
|
| 9 |
+
|
| 10 |
+
from axolotl.common.const import DEFAULT_DATASET_PREPARED_PATH
|
| 11 |
+
from axolotl.prompt_strategies.dpo import load as load_dpo
|
| 12 |
+
from axolotl.utils.data.utils import md5
|
| 13 |
+
from axolotl.utils.dict import DictDefault
|
| 14 |
+
from axolotl.utils.distributed import is_main_process, zero_first
|
| 15 |
+
|
| 16 |
+
LOG = logging.getLogger("axolotl")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def _get_path(ds_hash, cfg):
|
| 20 |
+
prepared_ds_path = (
|
| 21 |
+
Path(cfg.dataset_prepared_path) / ds_hash
|
| 22 |
+
if cfg.dataset_prepared_path
|
| 23 |
+
else Path(DEFAULT_DATASET_PREPARED_PATH) / ds_hash
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
return prepared_ds_path
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def _load_preprocessed_ds(cfg, sub_cfg):
|
| 30 |
+
ds_hash = md5(yaml.dump(sub_cfg, Dumper=yaml.Dumper))
|
| 31 |
+
prepared_ds_path = _get_path(ds_hash, cfg)
|
| 32 |
+
dataset = None
|
| 33 |
+
|
| 34 |
+
# pylint: disable=duplicate-code
|
| 35 |
+
if (
|
| 36 |
+
cfg.dataset_prepared_path
|
| 37 |
+
and any(prepared_ds_path.glob("*"))
|
| 38 |
+
and not cfg.is_preprocess
|
| 39 |
+
):
|
| 40 |
+
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
|
| 41 |
+
dataset = load_from_disk(str(prepared_ds_path))
|
| 42 |
+
|
| 43 |
+
return dataset
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def _save_preprocessed_ds(cfg, sub_cfg, dataset):
|
| 47 |
+
ds_hash = md5(yaml.dump(sub_cfg, Dumper=yaml.Dumper))
|
| 48 |
+
prepared_ds_path = _get_path(ds_hash, cfg)
|
| 49 |
+
|
| 50 |
+
if cfg.is_preprocess and is_main_process():
|
| 51 |
+
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
|
| 52 |
+
dataset.save_to_disk(str(prepared_ds_path))
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def load_prepare_dpo_datasets(cfg):
|
| 56 |
+
def load_split(dataset_cfgs, _cfg):
|
| 57 |
+
split_datasets: List[Any] = []
|
| 58 |
+
for i, ds_cfg in enumerate(dataset_cfgs):
|
| 59 |
+
if ds_cfg["ds_type"] == "json":
|
| 60 |
+
for data_file in ds_cfg["data_files"]:
|
| 61 |
+
data_files = {ds_cfg["split"]: data_file}
|
| 62 |
+
ds = load_dataset( # pylint: disable=invalid-name
|
| 63 |
+
"json",
|
| 64 |
+
data_files=data_files,
|
| 65 |
+
split=ds_cfg["split"],
|
| 66 |
+
)
|
| 67 |
+
split_datasets.insert(i, ds)
|
| 68 |
+
else:
|
| 69 |
+
ds = load_dataset( # pylint: disable=invalid-name
|
| 70 |
+
ds_cfg["path"],
|
| 71 |
+
split=ds_cfg["split"],
|
| 72 |
+
)
|
| 73 |
+
split_datasets.insert(i, ds)
|
| 74 |
+
|
| 75 |
+
for i, data_set in enumerate(split_datasets):
|
| 76 |
+
_type = dataset_cfgs[i]["type"]
|
| 77 |
+
if _type:
|
| 78 |
+
if isinstance(_type, DictDefault):
|
| 79 |
+
_type = "user_defined.default"
|
| 80 |
+
ds_transform_fn = load_dpo(_type, _cfg, dataset_idx=i)
|
| 81 |
+
split_datasets[i] = data_set.map(
|
| 82 |
+
ds_transform_fn,
|
| 83 |
+
desc="Mapping RL Dataset",
|
| 84 |
+
)
|
| 85 |
+
else:
|
| 86 |
+
# If no `type` is provided, assume the dataset is already in the expected format with
|
| 87 |
+
# "prompt", "chosen" and "rejected" already preprocessed
|
| 88 |
+
split_datasets[i] = data_set
|
| 89 |
+
|
| 90 |
+
return concatenate_datasets(split_datasets)
|
| 91 |
+
|
| 92 |
+
with zero_first(is_main_process()):
|
| 93 |
+
train_is_preprocessed = False
|
| 94 |
+
eval_is_preprocessed = False
|
| 95 |
+
if train_dataset := _load_preprocessed_ds(cfg, cfg.datasets):
|
| 96 |
+
train_is_preprocessed = True
|
| 97 |
+
else:
|
| 98 |
+
train_dataset = load_split(cfg.datasets, cfg)
|
| 99 |
+
|
| 100 |
+
eval_dataset = None
|
| 101 |
+
if cfg.test_datasets:
|
| 102 |
+
if eval_dataset := _load_preprocessed_ds(cfg, cfg.test_datasets):
|
| 103 |
+
eval_is_preprocessed = True
|
| 104 |
+
else:
|
| 105 |
+
eval_dataset = load_split(cfg.test_datasets, cfg)
|
| 106 |
+
if not eval_dataset:
|
| 107 |
+
eval_dataset = None
|
| 108 |
+
|
| 109 |
+
if not train_is_preprocessed:
|
| 110 |
+
_save_preprocessed_ds(cfg, cfg.datasets, train_dataset)
|
| 111 |
+
if eval_dataset and not eval_is_preprocessed:
|
| 112 |
+
_save_preprocessed_ds(cfg, cfg.test_datasets, eval_dataset)
|
| 113 |
+
|
| 114 |
+
return train_dataset, eval_dataset
|
src/axolotl/utils/data/pretraining.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""data handling specific to pretraining"""
|
| 2 |
+
|
| 3 |
+
import functools
|
| 4 |
+
import logging
|
| 5 |
+
from collections import defaultdict
|
| 6 |
+
from typing import Callable, Dict, List, Optional
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from datasets import Dataset
|
| 10 |
+
from torch.utils.data import RandomSampler
|
| 11 |
+
from transformers import PreTrainedTokenizerBase
|
| 12 |
+
|
| 13 |
+
from axolotl.utils.collators import PretrainingBatchSamplerDataCollatorForSeq2Seq
|
| 14 |
+
from axolotl.utils.samplers import MultipackBatchSampler, get_dataset_lengths
|
| 15 |
+
from axolotl.utils.trainer import process_pretraining_datasets_for_packing
|
| 16 |
+
|
| 17 |
+
LOG = logging.getLogger("axolotl")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def encode_pretraining(
|
| 21 |
+
tokenizer: PreTrainedTokenizerBase, max_tokens: int, examples: List[str]
|
| 22 |
+
) -> Dict[str, List]:
|
| 23 |
+
res = tokenizer(
|
| 24 |
+
examples,
|
| 25 |
+
truncation=True,
|
| 26 |
+
max_length=max_tokens - 2,
|
| 27 |
+
add_special_tokens=True,
|
| 28 |
+
)
|
| 29 |
+
# Convert to PyTorch tensors
|
| 30 |
+
input_ids = [torch.tensor(seq) for seq in res["input_ids"]]
|
| 31 |
+
attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]]
|
| 32 |
+
new_input_ids = []
|
| 33 |
+
new_attention_mask = []
|
| 34 |
+
# Append EOS and PAD tokens to input_ids, and correct attention_mask
|
| 35 |
+
for i, _ in enumerate(input_ids):
|
| 36 |
+
input_ids[i] = torch.cat(
|
| 37 |
+
(
|
| 38 |
+
input_ids[i],
|
| 39 |
+
torch.tensor([tokenizer.eos_token_id, tokenizer.pad_token_id]),
|
| 40 |
+
),
|
| 41 |
+
dim=0,
|
| 42 |
+
)
|
| 43 |
+
attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0)
|
| 44 |
+
|
| 45 |
+
# Concatenate tokens so that their lengths are less than max_tokens
|
| 46 |
+
buffer_input_ids = torch.tensor([], dtype=torch.long)
|
| 47 |
+
buffer_attention_mask = torch.tensor([], dtype=torch.long)
|
| 48 |
+
|
| 49 |
+
for ids, mask in zip(input_ids, attention_mask):
|
| 50 |
+
if buffer_input_ids.numel() == max_tokens:
|
| 51 |
+
new_input_ids.append(buffer_input_ids)
|
| 52 |
+
new_attention_mask.append(buffer_attention_mask)
|
| 53 |
+
buffer_input_ids = torch.tensor([], dtype=torch.long)
|
| 54 |
+
buffer_attention_mask = torch.tensor([], dtype=torch.long)
|
| 55 |
+
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
|
| 56 |
+
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
|
| 57 |
+
elif buffer_input_ids.numel() + ids.numel() <= max_tokens:
|
| 58 |
+
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
|
| 59 |
+
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
|
| 60 |
+
else:
|
| 61 |
+
buffer_input_ids = torch.cat(
|
| 62 |
+
(
|
| 63 |
+
buffer_input_ids,
|
| 64 |
+
torch.full(
|
| 65 |
+
(max_tokens - buffer_input_ids.numel(),),
|
| 66 |
+
tokenizer.pad_token_id,
|
| 67 |
+
dtype=torch.long,
|
| 68 |
+
),
|
| 69 |
+
),
|
| 70 |
+
dim=0,
|
| 71 |
+
)
|
| 72 |
+
buffer_attention_mask = torch.cat(
|
| 73 |
+
(
|
| 74 |
+
buffer_attention_mask,
|
| 75 |
+
torch.full(
|
| 76 |
+
(max_tokens - buffer_attention_mask.numel(),),
|
| 77 |
+
0,
|
| 78 |
+
dtype=torch.long,
|
| 79 |
+
),
|
| 80 |
+
),
|
| 81 |
+
dim=0,
|
| 82 |
+
)
|
| 83 |
+
new_input_ids.append(buffer_input_ids)
|
| 84 |
+
new_attention_mask.append(buffer_attention_mask)
|
| 85 |
+
buffer_input_ids = torch.tensor([], dtype=torch.long)
|
| 86 |
+
buffer_attention_mask = torch.tensor([], dtype=torch.long)
|
| 87 |
+
|
| 88 |
+
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
|
| 89 |
+
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
|
| 90 |
+
|
| 91 |
+
if buffer_input_ids.numel() > 0: # for any leftover tokens
|
| 92 |
+
while buffer_input_ids.numel() < max_tokens: # make all sequences equal in size
|
| 93 |
+
buffer_input_ids = torch.cat(
|
| 94 |
+
(
|
| 95 |
+
buffer_input_ids,
|
| 96 |
+
torch.full(
|
| 97 |
+
(max_tokens - buffer_input_ids.numel(),),
|
| 98 |
+
tokenizer.pad_token_id,
|
| 99 |
+
dtype=torch.long,
|
| 100 |
+
),
|
| 101 |
+
),
|
| 102 |
+
dim=0,
|
| 103 |
+
)
|
| 104 |
+
buffer_attention_mask = torch.cat(
|
| 105 |
+
(
|
| 106 |
+
buffer_attention_mask,
|
| 107 |
+
torch.full(
|
| 108 |
+
(max_tokens - buffer_attention_mask.numel(),),
|
| 109 |
+
0,
|
| 110 |
+
dtype=torch.long,
|
| 111 |
+
),
|
| 112 |
+
),
|
| 113 |
+
dim=0,
|
| 114 |
+
)
|
| 115 |
+
new_input_ids.append(buffer_input_ids)
|
| 116 |
+
new_attention_mask.append(buffer_attention_mask)
|
| 117 |
+
|
| 118 |
+
ret = {
|
| 119 |
+
"input_ids": [seq.tolist() for seq in new_input_ids],
|
| 120 |
+
"labels": [seq.tolist() for seq in new_input_ids],
|
| 121 |
+
"attention_mask": [seq.tolist() for seq in new_attention_mask],
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
LOG.debug(len(ret["input_ids"]))
|
| 125 |
+
return ret
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def wrap_pretraining_dataset(
|
| 129 |
+
dataset,
|
| 130 |
+
tokenizer,
|
| 131 |
+
cfg,
|
| 132 |
+
ds_wrapper_fn,
|
| 133 |
+
max_tokens=2048,
|
| 134 |
+
batch_size=1,
|
| 135 |
+
seed=42,
|
| 136 |
+
buffer_size=10_000,
|
| 137 |
+
):
|
| 138 |
+
if cfg.sample_packing:
|
| 139 |
+
collate_fn = PretrainingBatchSamplerDataCollatorForSeq2Seq(
|
| 140 |
+
tokenizer,
|
| 141 |
+
return_tensors="pt",
|
| 142 |
+
padding=True,
|
| 143 |
+
pad_to_multiple_of=max_tokens * batch_size,
|
| 144 |
+
multipack_attn=cfg.pretrain_multipack_attn,
|
| 145 |
+
)
|
| 146 |
+
encode = functools.partial(
|
| 147 |
+
encode_packed_pretraining,
|
| 148 |
+
collate_fn,
|
| 149 |
+
ds_wrapper_fn,
|
| 150 |
+
max_seq_length=max_tokens,
|
| 151 |
+
batch_size=batch_size,
|
| 152 |
+
multipack_attn=cfg.pretrain_multipack_attn,
|
| 153 |
+
)
|
| 154 |
+
# set this to 1 so downstream data_loader doesn't try to increase the batch again
|
| 155 |
+
cfg.micro_batch_size = 1
|
| 156 |
+
else:
|
| 157 |
+
encode = functools.partial(encode_pretraining, tokenizer, max_tokens)
|
| 158 |
+
|
| 159 |
+
if cfg.shuffle_merged_datasets:
|
| 160 |
+
dataset = dataset.shuffle(seed=seed, buffer_size=buffer_size)
|
| 161 |
+
else:
|
| 162 |
+
LOG.debug("NOT shuffling merged pretraining datasets")
|
| 163 |
+
|
| 164 |
+
# remove all the existing columns after mapping since they end up having
|
| 165 |
+
# a different length than the encoded/tokenized column
|
| 166 |
+
# this is empty during streaming/pretraining
|
| 167 |
+
remove_columns = []
|
| 168 |
+
if dataset.features is None:
|
| 169 |
+
for first_row in dataset:
|
| 170 |
+
remove_columns = first_row.keys()
|
| 171 |
+
break
|
| 172 |
+
else:
|
| 173 |
+
remove_columns = dataset.features.keys()
|
| 174 |
+
|
| 175 |
+
dataset = dataset.map(
|
| 176 |
+
encode,
|
| 177 |
+
batched=True,
|
| 178 |
+
batch_size=buffer_size,
|
| 179 |
+
# input_columns="text",
|
| 180 |
+
remove_columns=remove_columns,
|
| 181 |
+
)
|
| 182 |
+
return dataset
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def encode_packed_pretraining(
|
| 186 |
+
collate_fn,
|
| 187 |
+
ds_wrapper: Callable,
|
| 188 |
+
examples: Dict[str, List],
|
| 189 |
+
max_seq_length: int = 2048,
|
| 190 |
+
batch_size: int = 4,
|
| 191 |
+
multipack_attn: Optional[bool] = False,
|
| 192 |
+
) -> Dict[str, List]:
|
| 193 |
+
# pylint: disable=duplicate-code
|
| 194 |
+
# tokenize all the examples
|
| 195 |
+
# rows get split with stride (overlap)
|
| 196 |
+
train_dataset = ds_wrapper(Dataset.from_dict(examples))[0]
|
| 197 |
+
|
| 198 |
+
train_dataset = process_pretraining_datasets_for_packing(
|
| 199 |
+
train_dataset,
|
| 200 |
+
max_seq_length,
|
| 201 |
+
skip_position_ids=not multipack_attn,
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
sampler = MultipackBatchSampler(
|
| 205 |
+
RandomSampler(train_dataset),
|
| 206 |
+
batch_size=1,
|
| 207 |
+
drop_last=True,
|
| 208 |
+
batch_max_len=batch_size * max_seq_length,
|
| 209 |
+
lengths=get_dataset_lengths(train_dataset),
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
chunked_data = defaultdict(list)
|
| 213 |
+
|
| 214 |
+
for batch in sampler:
|
| 215 |
+
for data in batch:
|
| 216 |
+
features = train_dataset[data]
|
| 217 |
+
if "num_truncated_tokens" in features:
|
| 218 |
+
del features["num_truncated_tokens"]
|
| 219 |
+
if "num_truncated_tokens" in features:
|
| 220 |
+
del features["num_truncated_tokens"]
|
| 221 |
+
if "overflow_to_sample_mapping" in features:
|
| 222 |
+
del features["overflow_to_sample_mapping"]
|
| 223 |
+
if "labels" not in features:
|
| 224 |
+
features["labels"] = features["input_ids"].copy()
|
| 225 |
+
collated_features = collate_fn(features)
|
| 226 |
+
|
| 227 |
+
for feature in features.keys():
|
| 228 |
+
if feature == "length":
|
| 229 |
+
continue
|
| 230 |
+
chunked_data[feature].append(collated_features[feature].squeeze(0))
|
| 231 |
+
|
| 232 |
+
return chunked_data
|
src/axolotl/utils/{data.py → data/sft.py}
RENAMED
|
@@ -1,14 +1,10 @@
|
|
| 1 |
-
"""
|
| 2 |
|
| 3 |
import functools
|
| 4 |
-
import hashlib
|
| 5 |
import logging
|
| 6 |
-
from collections import defaultdict
|
| 7 |
from pathlib import Path
|
| 8 |
-
from typing import
|
| 9 |
|
| 10 |
-
import torch
|
| 11 |
-
import yaml
|
| 12 |
from datasets import (
|
| 13 |
Dataset,
|
| 14 |
DatasetDict,
|
|
@@ -18,13 +14,11 @@ from datasets import (
|
|
| 18 |
)
|
| 19 |
from huggingface_hub import hf_hub_download
|
| 20 |
from huggingface_hub.utils import HFValidationError
|
| 21 |
-
from torch.utils.data import RandomSampler
|
| 22 |
from transformers import PreTrainedTokenizerBase
|
| 23 |
|
| 24 |
from axolotl.common.const import DEFAULT_DATASET_PREPARED_PATH
|
| 25 |
from axolotl.datasets import TokenizedPromptDataset
|
| 26 |
from axolotl.prompt_strategies import load
|
| 27 |
-
from axolotl.prompt_strategies.dpo import load as load_dpo
|
| 28 |
from axolotl.prompt_tokenizers import (
|
| 29 |
AlpacaMultipleChoicePromptTokenizingStrategy,
|
| 30 |
AlpacaPromptTokenizingStrategy,
|
|
@@ -45,26 +39,18 @@ from axolotl.prompters import (
|
|
| 45 |
SummarizeTLDRPrompter,
|
| 46 |
UnsupportedPrompter,
|
| 47 |
)
|
| 48 |
-
from axolotl.utils.
|
|
|
|
| 49 |
from axolotl.utils.dict import DictDefault
|
| 50 |
from axolotl.utils.distributed import is_main_process, zero_first
|
| 51 |
-
from axolotl.utils.samplers import MultipackBatchSampler, get_dataset_lengths
|
| 52 |
from axolotl.utils.trainer import (
|
| 53 |
calculate_total_num_steps,
|
| 54 |
process_datasets_for_packing,
|
| 55 |
-
process_pretraining_datasets_for_packing,
|
| 56 |
)
|
| 57 |
|
| 58 |
LOG = logging.getLogger("axolotl")
|
| 59 |
|
| 60 |
|
| 61 |
-
def md5(to_hash: str, encoding: str = "utf-8") -> str:
|
| 62 |
-
try:
|
| 63 |
-
return hashlib.md5(to_hash.encode(encoding), usedforsecurity=False).hexdigest()
|
| 64 |
-
except TypeError:
|
| 65 |
-
return hashlib.md5(to_hash.encode(encoding)).hexdigest() # nosec
|
| 66 |
-
|
| 67 |
-
|
| 68 |
def prepare_dataset(cfg, tokenizer):
|
| 69 |
prompters = []
|
| 70 |
if not cfg.pretraining_dataset:
|
|
@@ -182,6 +168,7 @@ def load_tokenized_prepared_datasets(
|
|
| 182 |
except Exception: # pylint: disable=broad-except # nosec
|
| 183 |
pass
|
| 184 |
|
|
|
|
| 185 |
if dataset:
|
| 186 |
...
|
| 187 |
elif (
|
|
@@ -691,315 +678,3 @@ def get_dataset_wrapper(
|
|
| 691 |
)
|
| 692 |
|
| 693 |
return dataset_wrapper, dataset_prompter
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
def encode_pretraining(
|
| 697 |
-
tokenizer: PreTrainedTokenizerBase, max_tokens: int, examples: List[str]
|
| 698 |
-
) -> Dict[str, List]:
|
| 699 |
-
res = tokenizer(
|
| 700 |
-
examples,
|
| 701 |
-
truncation=True,
|
| 702 |
-
max_length=max_tokens - 2,
|
| 703 |
-
add_special_tokens=True,
|
| 704 |
-
)
|
| 705 |
-
# Convert to PyTorch tensors
|
| 706 |
-
input_ids = [torch.tensor(seq) for seq in res["input_ids"]]
|
| 707 |
-
attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]]
|
| 708 |
-
new_input_ids = []
|
| 709 |
-
new_attention_mask = []
|
| 710 |
-
# Append EOS and PAD tokens to input_ids, and correct attention_mask
|
| 711 |
-
for i, _ in enumerate(input_ids):
|
| 712 |
-
input_ids[i] = torch.cat(
|
| 713 |
-
(
|
| 714 |
-
input_ids[i],
|
| 715 |
-
torch.tensor([tokenizer.eos_token_id, tokenizer.pad_token_id]),
|
| 716 |
-
),
|
| 717 |
-
dim=0,
|
| 718 |
-
)
|
| 719 |
-
attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0)
|
| 720 |
-
|
| 721 |
-
# Concatenate tokens so that their lengths are less than max_tokens
|
| 722 |
-
buffer_input_ids = torch.tensor([], dtype=torch.long)
|
| 723 |
-
buffer_attention_mask = torch.tensor([], dtype=torch.long)
|
| 724 |
-
|
| 725 |
-
for ids, mask in zip(input_ids, attention_mask):
|
| 726 |
-
if buffer_input_ids.numel() == max_tokens:
|
| 727 |
-
new_input_ids.append(buffer_input_ids)
|
| 728 |
-
new_attention_mask.append(buffer_attention_mask)
|
| 729 |
-
buffer_input_ids = torch.tensor([], dtype=torch.long)
|
| 730 |
-
buffer_attention_mask = torch.tensor([], dtype=torch.long)
|
| 731 |
-
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
|
| 732 |
-
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
|
| 733 |
-
elif buffer_input_ids.numel() + ids.numel() <= max_tokens:
|
| 734 |
-
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
|
| 735 |
-
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
|
| 736 |
-
else:
|
| 737 |
-
buffer_input_ids = torch.cat(
|
| 738 |
-
(
|
| 739 |
-
buffer_input_ids,
|
| 740 |
-
torch.full(
|
| 741 |
-
(max_tokens - buffer_input_ids.numel(),),
|
| 742 |
-
tokenizer.pad_token_id,
|
| 743 |
-
dtype=torch.long,
|
| 744 |
-
),
|
| 745 |
-
),
|
| 746 |
-
dim=0,
|
| 747 |
-
)
|
| 748 |
-
buffer_attention_mask = torch.cat(
|
| 749 |
-
(
|
| 750 |
-
buffer_attention_mask,
|
| 751 |
-
torch.full(
|
| 752 |
-
(max_tokens - buffer_attention_mask.numel(),),
|
| 753 |
-
0,
|
| 754 |
-
dtype=torch.long,
|
| 755 |
-
),
|
| 756 |
-
),
|
| 757 |
-
dim=0,
|
| 758 |
-
)
|
| 759 |
-
new_input_ids.append(buffer_input_ids)
|
| 760 |
-
new_attention_mask.append(buffer_attention_mask)
|
| 761 |
-
buffer_input_ids = torch.tensor([], dtype=torch.long)
|
| 762 |
-
buffer_attention_mask = torch.tensor([], dtype=torch.long)
|
| 763 |
-
|
| 764 |
-
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
|
| 765 |
-
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
|
| 766 |
-
|
| 767 |
-
if buffer_input_ids.numel() > 0: # for any leftover tokens
|
| 768 |
-
while buffer_input_ids.numel() < max_tokens: # make all sequences equal in size
|
| 769 |
-
buffer_input_ids = torch.cat(
|
| 770 |
-
(
|
| 771 |
-
buffer_input_ids,
|
| 772 |
-
torch.full(
|
| 773 |
-
(max_tokens - buffer_input_ids.numel(),),
|
| 774 |
-
tokenizer.pad_token_id,
|
| 775 |
-
dtype=torch.long,
|
| 776 |
-
),
|
| 777 |
-
),
|
| 778 |
-
dim=0,
|
| 779 |
-
)
|
| 780 |
-
buffer_attention_mask = torch.cat(
|
| 781 |
-
(
|
| 782 |
-
buffer_attention_mask,
|
| 783 |
-
torch.full(
|
| 784 |
-
(max_tokens - buffer_attention_mask.numel(),),
|
| 785 |
-
0,
|
| 786 |
-
dtype=torch.long,
|
| 787 |
-
),
|
| 788 |
-
),
|
| 789 |
-
dim=0,
|
| 790 |
-
)
|
| 791 |
-
new_input_ids.append(buffer_input_ids)
|
| 792 |
-
new_attention_mask.append(buffer_attention_mask)
|
| 793 |
-
|
| 794 |
-
ret = {
|
| 795 |
-
"input_ids": [seq.tolist() for seq in new_input_ids],
|
| 796 |
-
"labels": [seq.tolist() for seq in new_input_ids],
|
| 797 |
-
"attention_mask": [seq.tolist() for seq in new_attention_mask],
|
| 798 |
-
}
|
| 799 |
-
|
| 800 |
-
LOG.debug(len(ret["input_ids"]))
|
| 801 |
-
return ret
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
def wrap_pretraining_dataset(
|
| 805 |
-
dataset,
|
| 806 |
-
tokenizer,
|
| 807 |
-
cfg,
|
| 808 |
-
ds_wrapper_fn,
|
| 809 |
-
max_tokens=2048,
|
| 810 |
-
batch_size=1,
|
| 811 |
-
seed=42,
|
| 812 |
-
buffer_size=10_000,
|
| 813 |
-
):
|
| 814 |
-
if cfg.sample_packing:
|
| 815 |
-
collate_fn = PretrainingBatchSamplerDataCollatorForSeq2Seq(
|
| 816 |
-
tokenizer,
|
| 817 |
-
return_tensors="pt",
|
| 818 |
-
padding=True,
|
| 819 |
-
pad_to_multiple_of=max_tokens * batch_size,
|
| 820 |
-
multipack_attn=cfg.pretrain_multipack_attn,
|
| 821 |
-
)
|
| 822 |
-
encode = functools.partial(
|
| 823 |
-
encode_packed_pretraining,
|
| 824 |
-
collate_fn,
|
| 825 |
-
ds_wrapper_fn,
|
| 826 |
-
max_seq_length=max_tokens,
|
| 827 |
-
batch_size=batch_size,
|
| 828 |
-
multipack_attn=cfg.pretrain_multipack_attn,
|
| 829 |
-
)
|
| 830 |
-
# set this to 1 so downstream data_loader doesn't try to increase the batch again
|
| 831 |
-
cfg.micro_batch_size = 1
|
| 832 |
-
else:
|
| 833 |
-
encode = functools.partial(encode_pretraining, tokenizer, max_tokens)
|
| 834 |
-
|
| 835 |
-
if cfg.shuffle_merged_datasets:
|
| 836 |
-
dataset = dataset.shuffle(seed=seed, buffer_size=buffer_size)
|
| 837 |
-
else:
|
| 838 |
-
LOG.debug("NOT shuffling merged pretraining datasets")
|
| 839 |
-
|
| 840 |
-
# remove all the existing columns after mapping since they end up having
|
| 841 |
-
# a different length than the encoded/tokenized column
|
| 842 |
-
# this is empty during streaming/pretraining
|
| 843 |
-
remove_columns = []
|
| 844 |
-
if dataset.features is None:
|
| 845 |
-
for first_row in dataset:
|
| 846 |
-
remove_columns = first_row.keys()
|
| 847 |
-
break
|
| 848 |
-
else:
|
| 849 |
-
remove_columns = dataset.features.keys()
|
| 850 |
-
|
| 851 |
-
dataset = dataset.map(
|
| 852 |
-
encode,
|
| 853 |
-
batched=True,
|
| 854 |
-
batch_size=buffer_size,
|
| 855 |
-
# input_columns="text",
|
| 856 |
-
remove_columns=remove_columns,
|
| 857 |
-
)
|
| 858 |
-
return dataset
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
def encode_packed_pretraining(
|
| 862 |
-
collate_fn,
|
| 863 |
-
ds_wrapper: Callable,
|
| 864 |
-
examples: Dict[str, List],
|
| 865 |
-
max_seq_length: int = 2048,
|
| 866 |
-
batch_size: int = 4,
|
| 867 |
-
multipack_attn: Optional[bool] = False,
|
| 868 |
-
) -> Dict[str, List]:
|
| 869 |
-
# pylint: disable=duplicate-code
|
| 870 |
-
# tokenize all the examples
|
| 871 |
-
# rows get split with stride (overlap)
|
| 872 |
-
train_dataset = ds_wrapper(Dataset.from_dict(examples))[0]
|
| 873 |
-
|
| 874 |
-
train_dataset = process_pretraining_datasets_for_packing(
|
| 875 |
-
train_dataset,
|
| 876 |
-
max_seq_length,
|
| 877 |
-
skip_position_ids=not multipack_attn,
|
| 878 |
-
)
|
| 879 |
-
|
| 880 |
-
sampler = MultipackBatchSampler(
|
| 881 |
-
RandomSampler(train_dataset),
|
| 882 |
-
batch_size=1,
|
| 883 |
-
drop_last=True,
|
| 884 |
-
batch_max_len=batch_size * max_seq_length,
|
| 885 |
-
lengths=get_dataset_lengths(train_dataset),
|
| 886 |
-
)
|
| 887 |
-
|
| 888 |
-
chunked_data = defaultdict(list)
|
| 889 |
-
|
| 890 |
-
for batch in sampler:
|
| 891 |
-
for data in batch:
|
| 892 |
-
features = train_dataset[data]
|
| 893 |
-
if "num_truncated_tokens" in features:
|
| 894 |
-
del features["num_truncated_tokens"]
|
| 895 |
-
if "num_truncated_tokens" in features:
|
| 896 |
-
del features["num_truncated_tokens"]
|
| 897 |
-
if "overflow_to_sample_mapping" in features:
|
| 898 |
-
del features["overflow_to_sample_mapping"]
|
| 899 |
-
if "labels" not in features:
|
| 900 |
-
features["labels"] = features["input_ids"].copy()
|
| 901 |
-
collated_features = collate_fn(features)
|
| 902 |
-
|
| 903 |
-
for feature in features.keys():
|
| 904 |
-
if feature == "length":
|
| 905 |
-
continue
|
| 906 |
-
chunked_data[feature].append(collated_features[feature].squeeze(0))
|
| 907 |
-
|
| 908 |
-
return chunked_data
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
def _get_path(ds_hash, cfg):
|
| 912 |
-
prepared_ds_path = (
|
| 913 |
-
Path(cfg.dataset_prepared_path) / ds_hash
|
| 914 |
-
if cfg.dataset_prepared_path
|
| 915 |
-
else Path(DEFAULT_DATASET_PREPARED_PATH) / ds_hash
|
| 916 |
-
)
|
| 917 |
-
|
| 918 |
-
return prepared_ds_path
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
def _load_preprocessed_ds(cfg, sub_cfg):
|
| 922 |
-
ds_hash = md5(yaml.dump(sub_cfg, Dumper=yaml.Dumper))
|
| 923 |
-
prepared_ds_path = _get_path(ds_hash, cfg)
|
| 924 |
-
dataset = None
|
| 925 |
-
|
| 926 |
-
if (
|
| 927 |
-
cfg.dataset_prepared_path
|
| 928 |
-
and any(prepared_ds_path.glob("*"))
|
| 929 |
-
and not cfg.is_preprocess
|
| 930 |
-
):
|
| 931 |
-
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
|
| 932 |
-
dataset = load_from_disk(str(prepared_ds_path))
|
| 933 |
-
|
| 934 |
-
return dataset
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
def _save_preprocessed_ds(cfg, sub_cfg, dataset):
|
| 938 |
-
ds_hash = md5(yaml.dump(sub_cfg, Dumper=yaml.Dumper))
|
| 939 |
-
prepared_ds_path = _get_path(ds_hash, cfg)
|
| 940 |
-
|
| 941 |
-
if cfg.is_preprocess and is_main_process():
|
| 942 |
-
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
|
| 943 |
-
dataset.save_to_disk(str(prepared_ds_path))
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
def load_prepare_dpo_datasets(cfg):
|
| 947 |
-
def load_split(dataset_cfgs, _cfg):
|
| 948 |
-
split_datasets: List[Any] = []
|
| 949 |
-
for i, ds_cfg in enumerate(dataset_cfgs):
|
| 950 |
-
if ds_cfg["ds_type"] == "json":
|
| 951 |
-
for data_file in ds_cfg["data_files"]:
|
| 952 |
-
data_files = {ds_cfg["split"]: data_file}
|
| 953 |
-
ds = load_dataset( # pylint: disable=invalid-name
|
| 954 |
-
"json",
|
| 955 |
-
data_files=data_files,
|
| 956 |
-
split=ds_cfg["split"],
|
| 957 |
-
)
|
| 958 |
-
split_datasets.insert(i, ds)
|
| 959 |
-
else:
|
| 960 |
-
ds = load_dataset( # pylint: disable=invalid-name
|
| 961 |
-
ds_cfg["path"],
|
| 962 |
-
split=ds_cfg["split"],
|
| 963 |
-
)
|
| 964 |
-
split_datasets.insert(i, ds)
|
| 965 |
-
|
| 966 |
-
for i, data_set in enumerate(split_datasets):
|
| 967 |
-
_type = dataset_cfgs[i]["type"]
|
| 968 |
-
if _type:
|
| 969 |
-
if isinstance(_type, DictDefault):
|
| 970 |
-
_type = "user_defined.default"
|
| 971 |
-
ds_transform_fn = load_dpo(_type, _cfg, dataset_idx=i)
|
| 972 |
-
split_datasets[i] = data_set.map(
|
| 973 |
-
ds_transform_fn,
|
| 974 |
-
desc="Mapping RL Dataset",
|
| 975 |
-
)
|
| 976 |
-
else:
|
| 977 |
-
# If no `type` is provided, assume the dataset is already in the expected format with
|
| 978 |
-
# "prompt", "chosen" and "rejected" already preprocessed
|
| 979 |
-
split_datasets[i] = data_set
|
| 980 |
-
|
| 981 |
-
return concatenate_datasets(split_datasets)
|
| 982 |
-
|
| 983 |
-
with zero_first(is_main_process()):
|
| 984 |
-
train_is_preprocessed = False
|
| 985 |
-
eval_is_preprocessed = False
|
| 986 |
-
if train_dataset := _load_preprocessed_ds(cfg, cfg.datasets):
|
| 987 |
-
train_is_preprocessed = True
|
| 988 |
-
else:
|
| 989 |
-
train_dataset = load_split(cfg.datasets, cfg)
|
| 990 |
-
|
| 991 |
-
eval_dataset = None
|
| 992 |
-
if cfg.test_datasets:
|
| 993 |
-
if eval_dataset := _load_preprocessed_ds(cfg, cfg.test_datasets):
|
| 994 |
-
eval_is_preprocessed = True
|
| 995 |
-
else:
|
| 996 |
-
eval_dataset = load_split(cfg.test_datasets, cfg)
|
| 997 |
-
if not eval_dataset:
|
| 998 |
-
eval_dataset = None
|
| 999 |
-
|
| 1000 |
-
if not train_is_preprocessed:
|
| 1001 |
-
_save_preprocessed_ds(cfg, cfg.datasets, train_dataset)
|
| 1002 |
-
if eval_dataset and not eval_is_preprocessed:
|
| 1003 |
-
_save_preprocessed_ds(cfg, cfg.test_datasets, eval_dataset)
|
| 1004 |
-
|
| 1005 |
-
return train_dataset, eval_dataset
|
|
|
|
| 1 |
+
"""data handling specific to SFT"""
|
| 2 |
|
| 3 |
import functools
|
|
|
|
| 4 |
import logging
|
|
|
|
| 5 |
from pathlib import Path
|
| 6 |
+
from typing import List, Optional, Tuple, Union
|
| 7 |
|
|
|
|
|
|
|
| 8 |
from datasets import (
|
| 9 |
Dataset,
|
| 10 |
DatasetDict,
|
|
|
|
| 14 |
)
|
| 15 |
from huggingface_hub import hf_hub_download
|
| 16 |
from huggingface_hub.utils import HFValidationError
|
|
|
|
| 17 |
from transformers import PreTrainedTokenizerBase
|
| 18 |
|
| 19 |
from axolotl.common.const import DEFAULT_DATASET_PREPARED_PATH
|
| 20 |
from axolotl.datasets import TokenizedPromptDataset
|
| 21 |
from axolotl.prompt_strategies import load
|
|
|
|
| 22 |
from axolotl.prompt_tokenizers import (
|
| 23 |
AlpacaMultipleChoicePromptTokenizingStrategy,
|
| 24 |
AlpacaPromptTokenizingStrategy,
|
|
|
|
| 39 |
SummarizeTLDRPrompter,
|
| 40 |
UnsupportedPrompter,
|
| 41 |
)
|
| 42 |
+
from axolotl.utils.data.pretraining import wrap_pretraining_dataset
|
| 43 |
+
from axolotl.utils.data.utils import md5
|
| 44 |
from axolotl.utils.dict import DictDefault
|
| 45 |
from axolotl.utils.distributed import is_main_process, zero_first
|
|
|
|
| 46 |
from axolotl.utils.trainer import (
|
| 47 |
calculate_total_num_steps,
|
| 48 |
process_datasets_for_packing,
|
|
|
|
| 49 |
)
|
| 50 |
|
| 51 |
LOG = logging.getLogger("axolotl")
|
| 52 |
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def prepare_dataset(cfg, tokenizer):
|
| 55 |
prompters = []
|
| 56 |
if not cfg.pretraining_dataset:
|
|
|
|
| 168 |
except Exception: # pylint: disable=broad-except # nosec
|
| 169 |
pass
|
| 170 |
|
| 171 |
+
# pylint: disable=duplicate-code
|
| 172 |
if dataset:
|
| 173 |
...
|
| 174 |
elif (
|
|
|
|
| 678 |
)
|
| 679 |
|
| 680 |
return dataset_wrapper, dataset_prompter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/axolotl/utils/data/utils.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""data handling helpers"""
|
| 2 |
+
|
| 3 |
+
import hashlib
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def md5(to_hash: str, encoding: str = "utf-8") -> str:
|
| 7 |
+
try:
|
| 8 |
+
return hashlib.md5(to_hash.encode(encoding), usedforsecurity=False).hexdigest()
|
| 9 |
+
except TypeError:
|
| 10 |
+
return hashlib.md5(to_hash.encode(encoding)).hexdigest() # nosec
|