qwerrwe / tests /e2e /test_phi.py
winglian's picture
run tests again on Modal (#1289) [skip ci]
0001862 unverified
raw
history blame
3.98 kB
"""
E2E tests for lora llama
"""
import logging
import os
import unittest
from pathlib import Path
import pytest
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from .utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
@pytest.mark.skip(reason="doesn't seem to work on modal")
class TestPhi(unittest.TestCase):
"""
Test case for Phi2 models
"""
@with_temp_dir
def test_phi_ft(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "microsoft/phi-1_5",
"model_type": "AutoModelForCausalLM",
"tokenizer_type": "AutoTokenizer",
"sequence_len": 2048,
"sample_packing": False,
"load_in_8bit": False,
"adapter": None,
"val_set_size": 0.1,
"special_tokens": {
"pad_token": "<|endoftext|>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"dataset_shard_num": 10,
"dataset_shard_idx": 0,
"num_epochs": 1,
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"flash_attention": True,
"max_steps": 10,
"save_steps": 10,
"eval_steps": 10,
"bf16": "auto",
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "pytorch_model.bin").exists()
@with_temp_dir
def test_phi_qlora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "microsoft/phi-1_5",
"model_type": "AutoModelForCausalLM",
"tokenizer_type": "AutoTokenizer",
"sequence_len": 2048,
"sample_packing": False,
"load_in_8bit": False,
"adapter": "qlora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.1,
"special_tokens": {
"pad_token": "<|endoftext|>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"dataset_shard_num": 10,
"dataset_shard_idx": 0,
"num_epochs": 1,
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"flash_attention": True,
"max_steps": 10,
"save_steps": 10,
"eval_steps": 10,
"bf16": "auto",
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()