qwerrwe / src /axolotl /train.py
winglian's picture
support for mamba (#915)
40a6362 unverified
raw
history blame
7.42 kB
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
import os
import signal
import sys
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import torch
import transformers.modelcard
from accelerate.logging import get_logger
from datasets import Dataset
from optimum.bettertransformer import BetterTransformer
from transformers.deepspeed import is_deepspeed_zero3_enabled
from axolotl.common.cli import TrainerCliArgs
from axolotl.logging_config import configure_logging
from axolotl.monkeypatch import neft_embeddings
from axolotl.utils.dict import DictDefault
from axolotl.utils.models import load_model, load_tokenizer
from axolotl.utils.trainer import setup_trainer
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
src_dir = os.path.join(project_root, "src")
sys.path.insert(0, src_dir)
configure_logging()
LOG = get_logger("axolotl.train")
@dataclass
class TrainDatasetMeta:
"""
dataclass to capture the dataset specific options for training
"""
train_dataset: Dataset
eval_dataset: Optional[Dataset] = None
total_num_steps: Optional[int] = None
def train(
*, cfg: DictDefault, cli_args: TrainerCliArgs, dataset_meta: TrainDatasetMeta
):
# load the tokenizer first
LOG.debug(
f"loading tokenizer... {cfg.tokenizer_config or cfg.base_model_config}",
main_process_only=True,
)
tokenizer = load_tokenizer(cfg)
train_dataset = dataset_meta.train_dataset
eval_dataset = dataset_meta.eval_dataset
total_num_steps = dataset_meta.total_num_steps
# Load the model and tokenizer
msg = "loading model"
if cfg.adapter:
msg += " and peft_config..."
LOG.debug(msg)
model, peft_config = load_model(cfg, tokenizer, inference=cli_args.inference)
safe_serialization = cfg.save_safetensors is True
if cfg.resume_from_checkpoint is None and cfg.auto_resume_from_checkpoints:
possible_checkpoints = [
str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*")
]
if len(possible_checkpoints) > 0:
sorted_paths = sorted(
possible_checkpoints,
key=lambda path: int(path.split("-")[-1]),
)
cfg.resume_from_checkpoint = sorted_paths[-1]
LOG.info(
f"Using Auto-resume functionality to start with checkpoint at {cfg.resume_from_checkpoint}"
)
resume_from_checkpoint = cfg.resume_from_checkpoint
trainer = setup_trainer(
cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps
)
if hasattr(model, "config"):
model.config.use_cache = False
# go ahead and presave, so we have the adapter config available to inspect
if peft_config:
LOG.info(f"Pre-saving adapter config to {cfg.output_dir}")
peft_config.save_pretrained(cfg.output_dir)
# additionally presave the tokenizer and model configs
if not Path(cfg.output_dir).is_dir():
os.makedirs(cfg.output_dir, exist_ok=True)
tokenizer.save_pretrained(str(Path(cfg.output_dir)))
if hasattr(model, "config"):
model.config.save_pretrained(str(Path(cfg.output_dir)))
# In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model
if cfg.local_rank == 0:
def terminate_handler(_, __, model):
if cfg.flash_optimum:
model = BetterTransformer.reverse(model)
model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization)
sys.exit(0)
signal.signal(
signal.SIGINT, lambda signum, frame: terminate_handler(signum, frame, model)
)
badge_markdown = """[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)"""
transformers.modelcard.AUTOGENERATED_TRAINER_COMMENT += f"\n{badge_markdown}"
LOG.info("Starting trainer...")
if cfg.group_by_length:
LOG.info("hang tight... sorting dataset for group_by_length")
pretrain_hooks(cfg, trainer)
if cfg.flash_optimum:
with torch.backends.cuda.sdp_kernel(
enable_flash=True, enable_math=True, enable_mem_efficient=True
):
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
else:
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
post_train_hooks(cfg, trainer)
LOG.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}")
# post training
for name, module in model.named_modules():
if hasattr(module, "_post_training"):
module._post_training(model, name) # pylint: disable=protected-access
if trainer.is_fsdp_enabled:
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
LOG.info("Set FSDP state dict type to FULL_STATE_DICT for saving.")
if cfg.relora_steps:
if cfg.adapter == "lora" and not (cfg.load_in_4bit or cfg.load_in_8bit):
model = model.merge_and_unload()
else:
# final model weights have already been saved by `ReLoRACallback.on_train_end`
return model, tokenizer
# TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading
# only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file
if cfg.fsdp:
trainer.save_model(cfg.output_dir)
elif cfg.deepspeed and is_deepspeed_zero3_enabled():
# Copied over from: https://github.com/huggingface/accelerate/blob/5ae611118057232f441055f7ef9ba0b0f2b8d533/docs/source/usage_guides/deepspeed.md#saving-and-loading
trainer.accelerator.wait_for_everyone()
unwrapped_model = trainer.accelerator.unwrap_model(trainer.model_wrapped)
# Saves the whole/unpartitioned fp16 model when in ZeRO Stage-3 to the output directory if
# `stage3_gather_16bit_weights_on_model_save` is True in DeepSpeed Config file or
# `zero3_save_16bit_model` is True in DeepSpeed Plugin.
# For Zero Stages 1 and 2, models are saved as usual in the output directory.
# The model name saved is `pytorch_model.bin`
unwrapped_model.save_pretrained(
cfg.output_dir,
is_main_process=trainer.accelerator.is_main_process,
save_function=trainer.accelerator.save,
state_dict=trainer.accelerator.get_state_dict(trainer.model_wrapped),
)
elif cfg.local_rank == 0:
if cfg.flash_optimum:
model = BetterTransformer.reverse(model)
model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization)
if not cfg.hub_model_id:
trainer.create_model_card(model_name=cfg.output_dir.lstrip("./"))
return model, tokenizer
def pretrain_hooks(cfg, trainer):
"""
Run hooks right before kicking off the training
:param cfg:
:param trainer:
:return:
"""
neft_embeddings.pretrain_hook(cfg, trainer)
def post_train_hooks(cfg, trainer):
"""
Run hooks right after training completes
:param cfg:
:param trainer:
:return:
"""
neft_embeddings.post_train_hook(cfg, trainer)