qwerrwe / src /axolotl /monkeypatch /neft_embeddings.py
winglian's picture
refactor neft patch to be more re-usable similar to trl's impl (#796)
827ec3d unverified
raw
history blame
2.44 kB
"""
patches implemented through the trainer hooks to enable NEFT/noisy embeddings per https://arxiv.org/abs/2310.05914
"""
import torch
from peft import PeftModel
from transformers import PreTrainedModel
def patch_neft(alpha, model):
embeddings = None
if isinstance(model, PreTrainedModel):
embeddings = model.get_input_embeddings()
if isinstance(model, PeftModel):
embeddings = model.base_model.get_input_embeddings()
if not embeddings:
raise ValueError(f"unhandled model class for neft: {model.__class__.__name__}")
embeddings.noisy_embedding_alpha = alpha
old_forward = embeddings.forward
# This hack seems to be needed to properly use a custom forward pass
# all credits to: https://discuss.pytorch.org/t/how-can-i-replace-the-forward-method-of-a-predefined-torchvision-model-with-my-customized-forward-function/54224/11
bound_method = neft_forward.__get__( # pylint: disable=no-value-for-parameter
embeddings, embeddings.__class__
)
setattr(embeddings, "forward", bound_method)
embeddings._old_forward = old_forward # pylint: disable=protected-access
return model
def unpatch_neft(model):
embeddings = None
if isinstance(model, PreTrainedModel):
embeddings = model.get_input_embeddings()
if isinstance(model, PeftModel):
embeddings = model.base_model.get_input_embeddings()
if not embeddings:
raise ValueError(f"unhandled model class for neft: {model.__class__.__name__}")
if hasattr(embeddings, "_old_forward"):
embeddings.forward = embeddings._old_forward # pylint: disable=protected-access
del embeddings._old_forward # pylint: disable=protected-access
del embeddings.noisy_embedding_alpha
def neft_forward(self, inputs: torch.Tensor):
embeddings = self._old_forward(inputs) # pylint: disable=protected-access
if self.training:
dims = torch.tensor(embeddings.size(1) * embeddings.size(2))
mag_norm = self.noisy_embedding_alpha / torch.sqrt(dims)
embeddings = embeddings + torch.zeros_like(embeddings).uniform_(
-mag_norm, mag_norm
)
return embeddings
def pretrain_hook(cfg, trainer):
if cfg.noisy_embedding_alpha:
trainer.model = patch_neft(cfg.noisy_embedding_alpha, trainer.model)
def post_train_hook(cfg, trainer):
if cfg.noisy_embedding_alpha:
unpatch_neft(trainer.model)