File size: 14,494 Bytes
6045345 bdbca8f 6045345 ffd1043 6045345 2bc1a5b ce34d64 6045345 2bc1a5b 8d43785 2bc1a5b 6045345 8bd7a49 6045345 32e6fe9 933e970 32e6fe9 ca1bb92 32e6fe9 6045345 32e6fe9 6045345 8bd7a49 6045345 2bc1a5b 6045345 8746b70 2bc1a5b 8746b70 6045345 aef00b6 6045345 dd00657 6045345 3b4d055 1987e5c 3b4d055 6045345 dd00657 6045345 d653859 2bc1a5b d653859 6045345 d653859 32e6fe9 6045345 641f801 6045345 8d43785 9190ada e8aacfb 9190ada 3b4d055 9190ada 1d5ab84 56f9ca5 1d5ab84 56f9ca5 1d5ab84 94f5e41 6045345 6dfdd2d e8aacfb 6045345 a125693 3b4d055 6045345 94f5e41 e2e68c3 94f5e41 e2e68c3 6dfdd2d e8aacfb 94f5e41 a125693 3b4d055 94f5e41 6045345 6dfdd2d 6045345 a125693 3b4d055 6045345 bdbca8f aa3c3f9 ce34d64 7b5e762 dd00657 7b5e762 7748f3d 6045345 94f5e41 6045345 dd00657 6045345 ce34d64 dd00657 ce34d64 42410c7 ad2b48c 247825b bdbca8f ad2b48c 6045345 32e6fe9 6045345 8bd7a49 6045345 7b5e762 6045345 2255bb7 6045345 2255bb7 8bd7a49 2255bb7 1d5ab84 1b3e401 2255bb7 ffd1043 6045345 8bd7a49 6045345 4c90633 9196237 6045345 2255bb7 ffd1043 2255bb7 2c73c81 2255bb7 6045345 2255bb7 1d5ab84 2255bb7 6045345 2255bb7 6045345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import logging
import math
import os
from pathlib import Path
from typing import Optional, Tuple, TYPE_CHECKING
import bitsandbytes as bnb
import torch
import transformers
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
PreTrainedModel,
AutoConfig,
BitsAndBytesConfig,
)
try:
from transformers import (
LlamaForCausalLM,
LlamaTokenizer,
)
except:
logging.warning(
"This version of transformers does not support Llama. Consider upgrading."
)
from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
if TYPE_CHECKING:
from peft import PeftModel, PeftConfig
from axolotl.utils.dict import DictDefault
from transformers import PreTrainedTokenizer
def load_tokenizer(
base_model_config,
tokenizer_type,
cfg,
):
if tokenizer_type:
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(
base_model_config,
trust_remote_code=cfg.trust_remote_code or False,
)
else:
tokenizer = AutoTokenizer.from_pretrained(
base_model_config,
trust_remote_code=cfg.trust_remote_code or False,
)
logging.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
logging.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
logging.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
logging.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]:
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if cfg.special_tokens:
for k, v in cfg.special_tokens.items():
tokenizer.add_special_tokens({k: v})
if cfg.tokens:
tokenizer.add_tokens(list(cfg.tokens))
return tokenizer
def load_model(
base_model,
base_model_config,
model_type,
tokenizer,
cfg,
adapter="lora",
inference=False,
):
# type: (str, str, str, str, DictDefault, Optional[str], bool) -> Tuple[PreTrainedModel, PreTrainedTokenizer, Optional[PeftConfig]]
# TODO refactor as a kwarg
load_in_8bit = cfg.load_in_8bit
is_llama_derived_model = "llama" in base_model or (
cfg.model_type and "llama" in cfg.model_type.lower()
)
if is_llama_derived_model and cfg.flash_attention:
if cfg.device not in ["mps", "cpu"] and inference is False:
from axolotl.flash_attn import replace_llama_attn_with_flash_attn
logging.info("patching with flash attention")
replace_llama_attn_with_flash_attn()
elif is_llama_derived_model and cfg.xformers_attention:
from alpaca_lora_4bit.monkeypatch.llama_attn_hijack_xformers import (
hijack_llama_attention,
)
logging.info("patching with xformers attention")
hijack_llama_attention()
if cfg.bf16:
torch_dtype = torch.bfloat16
elif cfg.load_in_8bit or cfg.fp16:
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
try:
if cfg.gptq:
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
replace_peft_model_with_int4_lora_model,
)
replace_peft_model_with_int4_lora_model()
from peft import prepare_model_for_int8_training
except Exception as e:
logging.exception(e)
raise e
model_kwargs = {}
if cfg.adapter == "qlora" and cfg.load_in_4bit:
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
try:
if cfg.gptq and is_llama_derived_model:
from alpaca_lora_4bit.autograd_4bit import load_llama_model_4bit_low_ram
from huggingface_hub import snapshot_download
try:
snapshot_download_kwargs = {}
if cfg.base_model_ignore_patterns:
snapshot_download_kwargs[
"ignore_patterns"
] = cfg.base_model_ignore_patterns
cache_model_path = Path(
snapshot_download(base_model, **snapshot_download_kwargs)
)
files = (
list(cache_model_path.glob("*.pt"))
+ list(cache_model_path.glob("*.safetensors"))
+ list(cache_model_path.glob("*.bin"))
)
if len(files) > 0:
model_path = str(files[0])
else:
logging.warning(
"unable to find a cached model file, this will likely fail..."
)
model_path = str(cache_model_path)
except:
model_path = cfg.base_model
model, _ = load_llama_model_4bit_low_ram(
base_model_config if base_model_config else base_model,
model_path,
device_map=cfg.device_map,
half=cfg.fp16,
groupsize=cfg.gptq_groupsize if cfg.gptq_groupsize else -1,
is_v1_model=cfg.gptq_model_v1
if cfg.gptq_model_v1 is not None
else True,
)
load_in_8bit = False
elif is_llama_derived_model and "LlamaForCausalLM" in globals():
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
device_map=cfg.device_map,
**model_kwargs,
)
# elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention:
# This is a WIP, still an issue with the backward pass
# RuntimeError: grad can be implicitly created only for scalar outputs
# TODO: try config.sequence_parallel = False
# # https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/tests/models/test_gpt_neox.py#L12
# # https://github.com/HazyResearch/flash-attention/tree/main/training#model-components
# # add `**kwargs` to https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/flash_attn/models/gpt.py#L442
# from flash_attn.utils.pretrained import state_dict_from_pretrained
# from flash_attn.models.gpt import GPTLMHeadModel
# from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox, gpt_neox_config_to_gpt2_config
# from transformers import GPTNeoXConfig
# config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(base_model))
# config.use_flash_attn = True
# config.fused_bias_fc = True
# config.fused_mlp = True # GPT-NeoX-20B uses "gelu_fast"
# config.activation_function = "gelu_fast"
# config.fused_dropout_add_ln = True
# # config.residual_in_fp32 = True
#
# model: GPTLMHeadModel = GPTLMHeadModel.from_pretrained(
# base_model,
# config,
# dtype=torch_dtype,
# device=cfg.device,
# )
# model.train() # sets to train instead of eval mode
elif model_type:
model = getattr(transformers, model_type).from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
device_map=cfg.device_map,
trust_remote_code=True if cfg.trust_remote_code is True else False,
**model_kwargs,
)
else:
config = AutoConfig.from_pretrained(
base_model,
trust_remote_code=True if cfg.trust_remote_code is True else False,
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
config=config,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
device_map=cfg.device_map,
trust_remote_code=True if cfg.trust_remote_code is True else False,
**model_kwargs,
)
except Exception as e:
logging.error(
"Exception raised attempting to load model, retrying with AutoModelForCausalLM"
)
logging.exception(e)
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
device_map=cfg.device_map,
trust_remote_code=True if cfg.trust_remote_code is True else False,
**model_kwargs,
)
embeddings_len = math.ceil(len(tokenizer) / 32) * 32
model.resize_token_embeddings(embeddings_len)
if (
((cfg.adapter == "lora" and load_in_8bit) or cfg.adapter == "qlora")
and not cfg.gptq
and (load_in_8bit or cfg.load_in_4bit)
):
logging.info("converting PEFT model w/ prepare_model_for_int8_training")
model = prepare_model_for_int8_training(model)
model, lora_config = load_adapter(model, cfg, adapter)
if cfg.ddp and not load_in_8bit:
model.to(f"cuda:{cfg.local_rank}")
if cfg.gptq:
# Scales to half
logging.info("Fitting 4bit scales and zeros to half")
for n, m in model.named_modules():
if "Autograd4bitQuantLinear" in str(type(m)) or "Linear4bitLt" in str(
type(m)
):
if hasattr(m, "is_v1_model") and m.is_v1_model:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
if (
torch.cuda.device_count() > 1
and int(os.getenv("WORLD_SIZE", "1")) > 1
and cfg.gptq
):
# llama is PROBABLY model parallelizable, but the default isn't that it is
# so let's only set it for the 4bit, see
# https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133
model.is_parallelizable = True
model.model_parallel = True
requires_grad = []
for name, param in model.named_parameters(recurse=True):
if param.requires_grad:
requires_grad.append(f"{name}: {param.requires_grad}")
if len(requires_grad) == 0:
logging.warning("there are no parameters that require gradient updates")
model.config.use_cache = False
# TODO resume_from_checkpoint handling
return model, lora_config
def load_adapter(model, cfg, adapter):
# type: (PreTrainedModel, DictDefault, Optional[str]) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
if adapter is None:
return model, None
if adapter in ["lora", "qlora"]:
return load_lora(model, cfg)
if adapter == "llama-adapter":
return load_llama_adapter(model, cfg)
raise NotImplementedError(f"{adapter} peft adapter not available")
def load_llama_adapter(model, cfg):
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import (
AdaptionPromptConfig,
get_peft_model,
PeftModel,
)
peft_config = AdaptionPromptConfig(
adapter_layers=cfg.peft_adapter.layers, # layers (L)
adapter_len=cfg.peft_adapter.len, # prompt length (K)
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
logging.info("Loading pretained LORA")
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
device_map=cfg.device_map,
torch_dtype=torch.float16,
)
else:
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
return model, peft_config
def find_all_linear_names(bits, model):
cls = (
bnb.nn.Linear4bit
if bits == 4
else (bnb.nn.Linear8bitLt if bits == 8 else torch.nn.Linear)
)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def load_lora(model, cfg):
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import (
LoraConfig,
get_peft_model,
PeftModel,
)
lora_target_modules = list(cfg.lora_target_modules or [])
if cfg.lora_target_linear:
bits = None
if cfg.load_in_4bit:
bits = 4
elif cfg.load_in_8bit:
bits = 8
linear_names = find_all_linear_names(bits, model)
logging.info(f"found linear modules: {repr(linear_names)}")
lora_target_modules = list(set(lora_target_modules + linear_names))
lora_config = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
target_modules=lora_target_modules,
lora_dropout=cfg.lora_dropout,
fan_in_fan_out=cfg.lora_fan_in_fan_out,
modules_to_save=cfg.lora_modules_to_save if cfg.lora_modules_to_save else None,
bias="none",
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
device_map=cfg.device_map,
# torch_dtype=torch.float16,
)
else:
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, lora_config
|