File size: 3,673 Bytes
5b0bc48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74f045
7de6a56
5b0bc48
 
 
 
 
 
 
 
 
 
0402d19
6dc68a6
5b0bc48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc68a6
5b0bc48
 
 
 
 
 
 
 
 
 
 
 
 
6dc68a6
5b0bc48
0402d19
6dc68a6
5b0bc48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc68a6
5b0bc48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc68a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""
E2E tests for lora llama
"""

import logging
import os
import unittest
from pathlib import Path

from transformers.utils import is_torch_bf16_gpu_available

from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

from .utils import with_temp_dir

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


class TestMistral(unittest.TestCase):
    """
    Test case for Llama models using LoRA
    """

    @with_temp_dir
    def test_lora(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "openaccess-ai-collective/tiny-mistral",
                "flash_attention": True,
                "sequence_len": 1024,
                "load_in_8bit": True,
                "adapter": "lora",
                "lora_r": 32,
                "lora_alpha": 64,
                "lora_dropout": 0.05,
                "lora_target_linear": True,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<unk>",
                    "bos_token": "<s>",
                    "eos_token": "</s>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_torch",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "eval_steps": 10,
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "adapter_model.bin").exists()

    @with_temp_dir
    def test_ft(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "openaccess-ai-collective/tiny-mistral",
                "flash_attention": True,
                "sequence_len": 1024,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<unk>",
                    "bos_token": "<s>",
                    "eos_token": "</s>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_torch",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "eval_steps": 10,
            }
        )
        if is_torch_bf16_gpu_available():
            cfg.bf16 = True
        else:
            cfg.fp16 = True
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "pytorch_model.bin").exists()