File size: 8,192 Bytes
cfcc549
e6fdeb0
 
 
e65aeed
e6fdeb0
3392270
e6fdeb0
7925ddc
3a38271
 
 
 
3392270
 
 
 
7925ddc
 
 
 
3a38271
553a86b
 
e6fdeb0
 
 
cfcc549
 
 
 
e6fdeb0
0136f51
e6fdeb0
 
 
 
 
 
 
 
 
 
cfcc549
 
 
e6fdeb0
 
cfcc549
 
 
 
e6fdeb0
 
 
 
 
 
 
 
 
 
 
 
 
 
1ab3bf3
7925ddc
 
 
 
baed440
7925ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baed440
7925ddc
 
 
 
 
 
 
 
 
 
 
 
 
e6fdeb0
3a38271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb0b78
 
 
 
 
 
 
 
 
3a38271
 
3392270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6fdeb0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""Module for testing prompt tokenizers."""
import json
import logging
import unittest
from pathlib import Path

from transformers import AutoTokenizer, LlamaTokenizer

from axolotl.prompt_strategies.alpaca_chat import NoSystemPrompter
from axolotl.prompt_strategies.alpaca_w_system import (
    InstructionWSystemPromptTokenizingStrategy,
    SystemDataPrompter,
)
from axolotl.prompt_strategies.llama2_chat import (
    Llama2ChatPrompter,
    LLama2ChatTokenizingStrategy,
)
from axolotl.prompt_tokenizers import (
    AlpacaPromptTokenizingStrategy,
    ShareGPTPromptTokenizingStrategy,
)
from axolotl.prompters import AlpacaPrompter, PromptStyle, ShareGPTPrompter

LOG = logging.getLogger("axolotl")


class TestPromptTokenizationStrategies(unittest.TestCase):
    """
    Test class for prompt tokenization strategies.
    """

    def setUp(self) -> None:
        # pylint: disable=duplicate-code
        self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
        self.tokenizer.add_special_tokens(
            {
                "bos_token": "<s>",
                "eos_token": "</s>",
                "unk_token": "<unk>",
            }
        )

    def test_sharegpt_integration(self):
        with open(
            Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8"
        ) as fin:
            data = fin.read()
            conversation = json.loads(data)
        with open(
            Path(__file__).parent / "fixtures/conversation.tokenized.json",
            encoding="utf-8",
        ) as fin:
            data = fin.read()
            tokenized_conversation = json.loads(data)
        prompter = ShareGPTPrompter("chat")
        strat = ShareGPTPromptTokenizingStrategy(
            prompter,
            self.tokenizer,
            False,
            2048,
        )
        example = strat.tokenize_prompt(conversation)
        for fields in ["input_ids", "attention_mask", "labels"]:
            self.assertEqual(len(example[fields]), len(tokenized_conversation[fields]))
            self.assertEqual(example[fields], tokenized_conversation[fields])

    def test_no_sys_prompt(self):
        """
        tests the interface between the user and assistant parts
        """
        prompter = NoSystemPrompter()
        # pylint: disable=duplicate-code
        strat = AlpacaPromptTokenizingStrategy(
            prompter,
            self.tokenizer,
            False,
            2048,
        )
        sample = {
            "instruction": "hello cruel. lorem ipsum dolor sit amet.",
            "output": "world!",
        }
        example = strat.tokenize_prompt(sample)
        world_idx = example["input_ids"].index(3186)
        assert example["labels"][world_idx] == 3186
        assert example["labels"][world_idx - 1] == -100

    def test_alpaca(self):
        """
        tests the interface between the user and assistant parts
        """
        # pylint: disable=duplicate-code
        prompter = AlpacaPrompter()
        strat = AlpacaPromptTokenizingStrategy(
            prompter,
            self.tokenizer,
            False,
            2048,
        )
        sample = {"instruction": "hello!", "output": "Hi! How can I help?"}
        example = strat.tokenize_prompt(sample)
        world_idx = example["input_ids"].index(6324)
        assert example["labels"][world_idx] == 6324
        assert example["labels"][world_idx - 1] == -100


class InstructionWSystemPromptTokenizingStrategyTest(unittest.TestCase):
    """
    Test class for prompt tokenization strategies with sys prompt from the dataset
    """

    def setUp(self) -> None:
        # pylint: disable=duplicate-code
        self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
        self.tokenizer.add_special_tokens(
            {
                "bos_token": "<s>",
                "eos_token": "</s>",
                "unk_token": "<unk>",
            }
        )

    def test_system_alpaca(self):
        prompter = SystemDataPrompter(PromptStyle.CHAT.value)
        strat = InstructionWSystemPromptTokenizingStrategy(
            prompter,
            self.tokenizer,
            False,
            2048,
        )
        sample = {
            "system": "use cot",
            "instruction": "hello!",
            "output": "Hi! How can I help?",
        }
        example = strat.tokenize_prompt(sample)
        assert example["input_ids"][0:5] == [
            1,
            28962,
            1254,
            12665,
            29901,
        ]  # "<s>SYSTEM:"
        assert example["input_ids"][5:7] == [671, 20118]  # " use cot"
        assert example["input_ids"][8] == 11889  # USER


class Llama2ChatTokenizationTest(unittest.TestCase):
    """
    Test class for prompt tokenization strategies with sys prompt from the dataset
    """

    def setUp(self) -> None:
        # pylint: disable=duplicate-code
        self.tokenizer = LlamaTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf")
        # woraround because official Meta repos are not open

    def test_llama2_chat_integration(self):
        with open(
            Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8"
        ) as fin:
            data = fin.read()
            conversation = json.loads(data)
        with open(
            Path(__file__).parent / "fixtures/conversation.tokenized_llama2chat.json",
            encoding="utf-8",
        ) as fin:
            data = fin.read()
            tokenized_conversation = json.loads(data)
        prompter = Llama2ChatPrompter()
        strat = LLama2ChatTokenizingStrategy(
            prompter,
            self.tokenizer,
            False,
            4096,
        )
        example = strat.tokenize_prompt(conversation)
        for fields in ["input_ids", "attention_mask", "labels"]:
            self.assertEqual(len(example[fields]), len(tokenized_conversation[fields]))
            self.assertEqual(example[fields], tokenized_conversation[fields])

    def compare_with_transformers_integration(self):
        # this needs transformers >= v4.31.0
        from transformers.models.llama.tokenization_llama import B_SYS, E_SYS
        from transformers.pipelines.conversational import Conversation

        # from transformers.models.llama.tokenization_llama import DEFAULT_SYSTEM_PROMPT
        # broken as of 23/7/20
        # see https://github.com/huggingface/transformers/pull/24935
        # pylint: disable=C0103
        DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
        with open(
            Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8"
        ) as fin:
            data = fin.read()
            conversation = json.loads(data)
        with open(
            Path(__file__).parent / "fixtures/conversation.tokenized_llama2chat.json",
            encoding="utf-8",
        ) as fin:
            data = fin.read()
            tokenized_conversation = json.loads(data)

        user_input = []
        answers = []
        for msg in conversation["conversations"]:
            if msg["from"] == "human":
                user_input.append(msg["value"])
            else:
                answers.append(msg["value"])
        hf_conf = Conversation(
            text=user_input[-1],
            past_user_inputs=[B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + user_input[0]]
            + user_input[1:-1],
            generated_responses=answers,
        )
        # pylint: disable=W0212
        hf_tokens = self.tokenizer._build_conversation_input_ids(hf_conf)

        self.assertEqual(
            hf_tokens, tokenized_conversation["input_ids"][: len(hf_tokens)]
        )


if __name__ == "__main__":
    unittest.main()