File size: 8,914 Bytes
05bcc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""
This module contains unit tests for the `freeze_layers_except` function.

The `freeze_layers_except` function is used to freeze layers in a model, except for the specified layers.
The unit tests in this module verify the behavior of the `freeze_layers_except` function in different scenarios.
"""

import unittest

import torch
from torch import nn

from axolotl.utils.freeze import freeze_layers_except

ZERO = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
ONE_TO_TEN = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]


class TestFreezeLayersExcept(unittest.TestCase):
    """
    A test case class for the `freeze_layers_except` function.
    """

    def setUp(self):
        self.model = _TestModel()

    def test_freeze_layers_with_dots_in_name(self):
        freeze_layers_except(self.model, ["features.layer"])
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

    def test_freeze_layers_without_dots_in_name(self):
        freeze_layers_except(self.model, ["classifier"])
        self.assertFalse(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertTrue(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

    def test_freeze_layers_regex_patterns(self):
        # The second pattern cannot match because only characters 'a' to 'c' are allowed after the word 'class', whereas it should be matching the character 'i'.
        freeze_layers_except(self.model, [r"^features.[a-z]+.weight$", r"class[a-c]+"])
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

    def test_all_layers_frozen(self):
        freeze_layers_except(self.model, [])
        self.assertFalse(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be frozen.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

    def test_all_layers_unfrozen(self):
        freeze_layers_except(self.model, ["features.layer", "classifier"])
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertTrue(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be trainable.",
        )

    def test_freeze_layers_with_range_pattern_start_end(self):
        freeze_layers_except(self.model, ["features.layer[1:5]"])
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

        self._assert_gradient_output(
            [
                ZERO,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ZERO,
                ZERO,
                ZERO,
                ZERO,
                ZERO,
            ]
        )

    def test_freeze_layers_with_range_pattern_single_index(self):
        freeze_layers_except(self.model, ["features.layer[5]"])
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

        self._assert_gradient_output(
            [ZERO, ZERO, ZERO, ZERO, ZERO, ONE_TO_TEN, ZERO, ZERO, ZERO, ZERO]
        )

    def test_freeze_layers_with_range_pattern_start_omitted(self):
        freeze_layers_except(self.model, ["features.layer[:5]"])
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

        self._assert_gradient_output(
            [
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ZERO,
                ZERO,
                ZERO,
                ZERO,
                ZERO,
            ]
        )

    def test_freeze_layers_with_range_pattern_end_omitted(self):
        freeze_layers_except(self.model, ["features.layer[4:]"])
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

        self._assert_gradient_output(
            [
                ZERO,
                ZERO,
                ZERO,
                ZERO,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
            ]
        )

    def test_freeze_layers_with_range_pattern_merge_included(self):
        freeze_layers_except(self.model, ["features.layer[4:]", "features.layer[5:6]"])
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

        self._assert_gradient_output(
            [
                ZERO,
                ZERO,
                ZERO,
                ZERO,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
            ]
        )

    def test_freeze_layers_with_range_pattern_merge_intersect(self):
        freeze_layers_except(self.model, ["features.layer[4:7]", "features.layer[6:8]"])
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

        self._assert_gradient_output(
            [
                ZERO,
                ZERO,
                ZERO,
                ZERO,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ONE_TO_TEN,
                ZERO,
                ZERO,
            ]
        )

    def test_freeze_layers_with_range_pattern_merge_separate(self):
        freeze_layers_except(
            self.model,
            ["features.layer[1:2]", "features.layer[3:4]", "features.layer[5:6]"],
        )
        self.assertTrue(
            self.model.features.layer.weight.requires_grad,
            "model.features.layer should be trainable.",
        )
        self.assertFalse(
            self.model.classifier.weight.requires_grad,
            "model.classifier should be frozen.",
        )

        self._assert_gradient_output(
            [
                ZERO,
                ONE_TO_TEN,
                ZERO,
                ONE_TO_TEN,
                ZERO,
                ONE_TO_TEN,
                ZERO,
                ZERO,
                ZERO,
                ZERO,
            ]
        )

    def _assert_gradient_output(self, expected):
        input_tensor = torch.tensor([ONE_TO_TEN], dtype=torch.float32)

        self.model.features.layer.weight.grad = None  # Reset gradients
        output = self.model.features.layer(input_tensor)
        loss = output.sum()
        loss.backward()

        expected_grads = torch.tensor(expected)
        torch.testing.assert_close(
            self.model.features.layer.weight.grad, expected_grads
        )


class _SubLayerModule(nn.Module):
    def __init__(self):
        super().__init__()
        self.layer = nn.Linear(10, 10)


class _TestModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.features = _SubLayerModule()
        self.classifier = nn.Linear(10, 2)


if __name__ == "__main__":
    unittest.main()