DocUA's picture
Додано логування запитів на обробку документів та виконання аналізу Gemini. Поліпшено обробку помилок з можливістю використання резервних моделей при перевищенні квоти. Це підвищує надійність системи та забезпечує кращу видимість процесів обробки.
d1f04f2
raw
history blame
9.41 kB
"""Core processing logic for the MarkItDown Testing Platform."""
from __future__ import annotations
import logging
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Dict, Optional
from pydantic import JsonValue
from core.modules import (
HFConversionEngine,
ProcessingConfig,
ProcessingResult,
ResourceManager,
StreamlineFileHandler,
)
from llm.gemini_connector import (
AnalysisRequest,
AnalysisType,
GeminiConfig,
GeminiConnectionManager,
GeminiModel,
)
from visualization.analytics_engine import QualityMetricsCalculator
logger = logging.getLogger(__name__)
JSONDict = Dict[str, JsonValue]
@dataclass(frozen=True)
class ProcessingRequest:
"""Immutable request container describing a processing job."""
file_content: bytes
file_metadata: JSONDict
gemini_api_key: Optional[str] = None
analysis_type: str = AnalysisType.QUALITY_ANALYSIS.value
model_preference: str = GeminiModel.PRO.value
use_llm: bool = False
enable_plugins: bool = False
azure_endpoint: Optional[str] = None
session_context: JSONDict = field(default_factory=dict)
@dataclass(frozen=True)
class ProcessingResponse:
"""Standardized response describing the outcome of processing."""
success: bool
conversion_result: Optional[ProcessingResult]
analysis_result: Optional[Any]
quality_metrics: JSONDict
error_details: Optional[str]
processing_metadata: JSONDict
@classmethod
def success_response(
cls,
conversion_result: ProcessingResult,
analysis_result: Optional[Any] = None,
quality_metrics: Optional[JSONDict] = None,
) -> "ProcessingResponse":
return cls(
success=True,
conversion_result=conversion_result,
analysis_result=analysis_result,
quality_metrics=quality_metrics or {},
error_details=None,
processing_metadata={"completed_at": datetime.now().isoformat()},
)
@classmethod
def error_response(
cls,
error_message: str,
error_context: Optional[JSONDict] = None,
) -> "ProcessingResponse":
return cls(
success=False,
conversion_result=None,
analysis_result=None,
quality_metrics={},
error_details=error_message,
processing_metadata=error_context or {"failed_at": datetime.now().isoformat()},
)
class DocumentProcessingOrchestrator:
"""Coordinates the document conversion and optional AI analysis pipeline."""
def __init__(
self,
file_handler: StreamlineFileHandler,
conversion_engine: HFConversionEngine,
gemini_manager: GeminiConnectionManager,
quality_calculator: QualityMetricsCalculator,
) -> None:
self.file_handler = file_handler
self.conversion_engine = conversion_engine
self.gemini_manager = gemini_manager
self.quality_calculator = quality_calculator
self.processing_count = 0
self.error_count = 0
self.total_processing_time = 0.0
async def process_document(self, request: ProcessingRequest) -> ProcessingResponse:
"""Process a document and optionally run Gemini analysis."""
processing_start = datetime.now()
self.processing_count += 1
try:
logger.info(
"Starting document processing - Session: %s | LLM Enabled: %s",
request.session_context.get("session_id", "unknown"),
request.use_llm,
)
conversion_result = await self._execute_conversion_pipeline(request)
if not conversion_result.success:
return ProcessingResponse.error_response(
f"Conversion failed: {conversion_result.error_message}",
{"phase": "conversion", "request_metadata": request.file_metadata},
)
analysis_result = None
if request.gemini_api_key:
analysis_result = await self._execute_analysis_pipeline(request, conversion_result)
quality_metrics = self.quality_calculator.calculate_conversion_quality_metrics(
conversion_result, analysis_result
)
processing_duration = (datetime.now() - processing_start).total_seconds()
self.total_processing_time += processing_duration
logger.info("Processing completed successfully in %.2fs", processing_duration)
return ProcessingResponse.success_response(
conversion_result=conversion_result,
analysis_result=analysis_result,
quality_metrics=quality_metrics,
)
except Exception as exc: # pragma: no cover - defensive logging
self.error_count += 1
error_duration = (datetime.now() - processing_start).total_seconds()
logger.error("Processing failed after %.2fs: %s", error_duration, exc)
return ProcessingResponse.error_response(
error_message=f"System processing error: {exc}",
error_context={
"processing_duration": error_duration,
"error_type": type(exc).__name__,
"processing_phase": "unknown",
},
)
async def _execute_conversion_pipeline(self, request: ProcessingRequest) -> ProcessingResult:
"""Handle file ingestion, validation, and conversion to Markdown."""
class ProcessingFile:
def __init__(self, content: bytes, metadata: JSONDict) -> None:
self.content = content
self.name = metadata.get("filename", "uploaded_file")
def read(self) -> bytes:
return self.content
@property
def size(self) -> int:
return len(self.content)
processing_file = ProcessingFile(request.file_content, request.file_metadata)
file_result = await self.file_handler.process_upload(
processing_file,
metadata_override=request.file_metadata,
)
if not file_result.success:
return file_result
conversion_result = await self.conversion_engine.convert_stream(
request.file_content,
request.file_metadata,
)
return conversion_result
async def _execute_analysis_pipeline(
self,
request: ProcessingRequest,
conversion_result: ProcessingResult,
) -> Optional[Any]:
"""Run Gemini analysis with retry and error handling."""
try:
gemini_config = GeminiConfig(api_key=request.gemini_api_key)
try:
engine_id = await self.gemini_manager.create_engine(
request.gemini_api_key,
gemini_config,
)
except Exception as exc:
raise
engine = self.gemini_manager.get_engine(engine_id)
if not engine:
logger.warning("Gemini engine creation failed - skipping analysis")
return None
analysis_request = AnalysisRequest(
content=conversion_result.content,
analysis_type=AnalysisType(request.analysis_type),
model=GeminiModel.from_str(request.model_preference),
)
logging.info(
"Executing Gemini analysis | Type: %s | Model: %s",
analysis_request.analysis_type,
analysis_request.model,
)
analysis_result = await engine.analyze_content(analysis_request)
if analysis_result.success:
logger.info("Gemini analysis completed - Type: %s", request.analysis_type)
return analysis_result
logger.warning("Gemini analysis failed: %s", analysis_result.error_message)
return None
except Exception as exc: # pragma: no cover - defensive logging
logger.warning("Gemini analysis pipeline error: %s", exc)
return None
def get_processing_status(self) -> JSONDict:
"""Expose operational metrics for status dashboards."""
success_rate = (
((self.processing_count - self.error_count) / self.processing_count * 100)
if self.processing_count
else 0
)
average_processing_time = (
self.total_processing_time / self.processing_count if self.processing_count else 0
)
return {
"total_documents_processed": self.processing_count,
"success_rate_percent": success_rate,
"error_count": self.error_count,
"average_processing_time_seconds": average_processing_time,
"total_processing_time_seconds": self.total_processing_time,
"status": "healthy"
if success_rate > 90
else "degraded"
if success_rate > 70
else "unhealthy",
}
__all__ = [
"JSONDict",
"ProcessingRequest",
"ProcessingResponse",
"DocumentProcessingOrchestrator",
"ProcessingConfig",
"ResourceManager",
"StreamlineFileHandler",
"HFConversionEngine",
"GeminiConnectionManager",
"QualityMetricsCalculator",
]