from PyPDF2 import PdfReader import pymupdf import numpy as np import cv2 import shutil import imageio from PIL import Image import imagehash import tempfile import os from llama_index.core.indices import MultiModalVectorStoreIndex from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import SimpleDirectoryReader, StorageContext from awsfunctions import upload_folder_to_s3, check_file_exists_in_s3, download_folder_from_s3, delete_s3_folder import qdrant_client import streamlit as st def extract_text_from_pdf(pdf_path): reader = PdfReader(pdf_path) full_text = '' for page in reader.pages: text = page.extract_text() full_text += text return full_text def extract_images_from_pdf(pdf_path, img_save_path): doc = pymupdf.open(pdf_path) for page in doc: img_number = 0 for block in page.get_text("dict")["blocks"]: if block['type'] == 1: name = os.path.join(img_save_path, f"img{page.number}-{img_number}.{block['ext']}") out = open(name, "wb") out.write(block["image"]) out.close() img_number += 1 def is_empty(img_path): image = cv2.imread(img_path, 0) std_dev = np.std(image) return std_dev < 1 def move_images(source_folder, dest_folder): image_files = [f for f in os.listdir(source_folder) if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))] os.makedirs(dest_folder, exist_ok=True) moved_count = 0 for file in image_files: src_path = os.path.join(source_folder, file) if not is_empty(src_path): shutil.move(src_path, os.path.join(dest_folder, file)) moved_count += 1 return moved_count def remove_low_size_images(data_path): images_list = os.listdir(data_path) low_size_photo_list = [] for one_image in images_list: image_path = os.path.join(data_path, one_image) try: pic = imageio.imread(image_path) size = pic.size if size < 100: low_size_photo_list.append(one_image) except: pass for one_image in low_size_photo_list[1:]: os.remove(os.path.join(data_path, one_image)) def calc_diff(img1 , img2) : i1 = Image.open(img1) i2 = Image.open(img2) h1 = imagehash.phash(i1) h2 = imagehash.phash(i2) return h1 - h2 def remove_duplicate_images(data_path) : image_files = os.listdir(data_path) only_images = [] for one_image in image_files : if one_image.endswith('jpeg') or one_image.endswith('png') or one_image.endswith('jpg') : only_images.append(one_image) only_images1 = sorted(only_images) for one_image in only_images1 : for another_image in only_images1 : try : if one_image == another_image : continue else : diff = calc_diff(os.path.join(data_path ,one_image) , os.path.join(data_path ,another_image)) if diff ==0 : os.remove(os.path.join(data_path , another_image)) except Exception as e: print(e) pass # from langchain_chroma import Chroma # import chromadb def initialize_qdrant(temp_dir , aws_prefix): client = qdrant_client.QdrantClient(path=os.path.join(temp_dir, "qdrant")) text_store = QdrantVectorStore( client = client , collection_name=f"text_collection" ) image_store = QdrantVectorStore(client = client , collection_name=f"image_collection") storage_context = StorageContext.from_defaults(vector_store=text_store, image_store=image_store) documents = SimpleDirectoryReader(os.path.join(temp_dir, f"data")).load_data() for doc in documents: doc.metadata["file_path"] = os.path.join(aws_prefix, os.path.relpath(doc.metadata["file_path"], temp_dir)) index = MultiModalVectorStoreIndex.from_documents(documents, storage_context=storage_context) retriever_engine = index.as_retriever(similarity_top_k=1, image_similarity_top_k=1) return retriever_engine def process_pdf(pdf_file): username = "ptchecker" aws_prefix_path = os.path.join(os.getenv("FOLDER_PREFIX"), username, "FILES", os.path.splitext(pdf_file.name)[0]) if check_file_exists_in_s3(os.path.join(aws_prefix_path, pdf_file.name)): delete_s3_folder(aws_prefix_path) # temp_dir = tempfile.mkdtemp() # download_folder_from_s3(local_folder=temp_dir, aws_folder_prefix=os.path.join(aws_prefix_path, "qdrant")) # client = qdrant_client.QdrantClient(path=os.path.join(temp_dir, "qdrant")) # image_store = QdrantVectorStore(client = client , collection_name=f"image_collection") # text_store = QdrantVectorStore(client = client , collection_name=f"text_collection") # index = MultiModalVectorStoreIndex.from_vector_store(vector_store=text_store, image_store=image_store) # retriever_engine = index.as_retriever(similarity_top_k=1, image_similarity_top_k=1) # shutil.rmtree(temp_dir) # return retriever_engine temp_dir = tempfile.mkdtemp() temp_pdf_path = os.path.join(temp_dir, pdf_file.name) with open(temp_pdf_path, "wb") as f: f.write(pdf_file.getvalue()) data_path = os.path.join(temp_dir, "data") os.makedirs(data_path , exist_ok=True) img_save_path = os.path.join(temp_dir, "images") os.makedirs(img_save_path , exist_ok=True) extracted_text = extract_text_from_pdf(temp_pdf_path) with open(os.path.join(data_path, "content.txt"), "w") as file: file.write(extracted_text) extract_images_from_pdf(temp_pdf_path, img_save_path) moved_count = move_images(img_save_path, data_path) print("Images moved count : ", moved_count) remove_low_size_images(data_path) remove_duplicate_images(data_path) shutil.rmtree(img_save_path) retriever_engine = initialize_qdrant(temp_dir=temp_dir, aws_prefix=aws_prefix_path) # os.path.join("folder" , os.path.splitext(pdf_file.name)[0] , unique_folder_name) upload_folder_to_s3(temp_dir, aws_prefix_path) shutil.rmtree(temp_dir) return retriever_engine