from fastapi import FastAPI, HTTPException from pydantic import BaseModel import torch import torchaudio import ChatTTS # Configure Torch torch._dynamo.config.cache_size_limit = 64 torch._dynamo.config.suppress_errors = True torch.set_float32_matmul_precision('high') # Initialize FastAPI app and ChatTTS model app = FastAPI() chat = ChatTTS.Chat() chat.load_models(compile=False) # Define the request model class TextRequest(BaseModel): text: str @app.post("/synthesize/") async def synthesize_speech(request: TextRequest): try: # Perform inference wavs = chat.infer([request.text]) # Save the generated audio output_file = "output.wav" torchaudio.save(output_file, torch.from_numpy(wavs[0]), 24000) return {"message": "Speech synthesized successfully", "audio_file": output_file} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # Root endpoint @app.get("/") def read_root(): return {"message": "Welcome to the ChatTTS API. Use the /synthesize/ endpoint to generate speech."}