File size: 10,228 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
from pathlib import Path
current_dir = Path(__file__).parent.absolute()


import pytest

import torch

import dotenv

from src.datamodules.language_modeling_hf import LMDataModule

# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
dotenv.load_dotenv(override=True)


def div_up(x: int, y: int) -> int:
    return (x + y - 1) // y


# https://stackoverflow.com/questions/1006289/how-to-find-out-the-number-of-cpus-using-python/55423170#55423170
def num_cpu_cores():
    try:
        import psutil
        return psutil.cpu_count(logical=False)
    except ImportError:
        return len(os.sched_getaffinity(0))


class TestLMDataModule:

    def test_wikitext2(self):
        batch_size = 7
        dataset_name = 'wikitext'
        dataset_config_name = 'wikitext-2-raw-v1'
        data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data'))
        cache_dir = data_dir / 'wikitext-2' / 'cache'
        max_length = 1024
        datamodule = LMDataModule(dataset_name, tokenizer_name='gpt2',
                                  dataset_config_name=dataset_config_name,
                                  max_length=max_length, cache_dir=cache_dir,
                                  add_eos=False, batch_size=batch_size, num_workers=4)
        datamodule.prepare_data()
        datamodule.setup(stage='fit')
        train_loader = datamodule.train_dataloader()
        val_loader = datamodule.val_dataloader()
        datamodule.setup(stage='test')
        test_loader = datamodule.test_dataloader()
        train_len = 2391884
        val_len = 247289
        test_len = 283287
        assert len(train_loader) == div_up((train_len - 1) // max_length, batch_size)
        assert len(val_loader) == div_up((val_len - 1) // max_length, batch_size)
        assert len(test_loader) == div_up((test_len - 1) // max_length, batch_size)
        for loader in [train_loader, val_loader, test_loader]:
            x, y = next(iter(loader))
            assert x.dim() == 2
            assert x.shape == (batch_size, max_length)
            assert x.dtype == torch.long
            assert torch.allclose(x[:, 1:], y[:, :-1])

    def test_wikitext103(self):
        batch_size = 7
        dataset_name = 'wikitext'
        dataset_config_name = 'wikitext-103-raw-v1'
        data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data'))
        cache_dir = data_dir / 'wikitext-103' / 'cache'
        max_length = 1024
        datamodule = LMDataModule(dataset_name, tokenizer_name='gpt2',
                                  dataset_config_name=dataset_config_name,
                                  max_length=max_length, cache_dir=cache_dir,
                                  add_eos=False, batch_size=batch_size, num_workers=4)
        datamodule.prepare_data()
        datamodule.setup(stage='fit')
        train_loader = datamodule.train_dataloader()
        val_loader = datamodule.val_dataloader()
        datamodule.setup(stage='test')
        test_loader = datamodule.test_dataloader()
        train_len = 117920140
        val_len = 247289
        test_len = 283287
        assert len(train_loader) == div_up((train_len - 1) // max_length, batch_size)
        assert len(val_loader) == div_up((val_len - 1) // max_length, batch_size)
        assert len(test_loader) == div_up((test_len - 1) // max_length, batch_size)
        for loader in [train_loader, val_loader, test_loader]:
            x, y = next(iter(loader))
            assert x.dim() == 2
            assert x.shape == (batch_size, max_length)
            assert x.dtype == torch.long
            assert torch.allclose(x[:, 1:], y[:, :-1])

    def test_openwebtext(self):
        batch_size = 8
        dataset_name = 'openwebtext'
        dataset_config_name = None
        data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data'))
        cache_dir = data_dir / 'openwebtext' / 'cache'
        max_length = 1024
        datamodule = LMDataModule(dataset_name, tokenizer_name='gpt2',
                                  dataset_config_name=dataset_config_name,
                                  max_length=max_length, cache_dir=cache_dir,
                                  add_eos=True, batch_size=batch_size,
                                  num_workers=num_cpu_cores() // 2)
        datamodule.prepare_data()
        datamodule.setup(stage='fit')
        train_loader = datamodule.train_dataloader()
        val_loader = datamodule.val_dataloader()
        datamodule.setup(stage='test')
        test_loader = datamodule.test_dataloader()
        train_len = 9035582198
        val_len = 4434897
        test_len = 4434897
        assert len(train_loader) == div_up((train_len - 1) // max_length, batch_size)
        assert len(val_loader) == div_up((val_len - 1) // max_length, batch_size)
        assert len(test_loader) == div_up((test_len - 1) // max_length, batch_size)
        for loader in [train_loader, val_loader, test_loader]:
            x, y = next(iter(loader))
            assert x.dim() == 2
            assert x.shape == (batch_size, max_length)
            assert x.dtype == torch.long
            assert torch.allclose(x[:, 1:], y[:, :-1])

    def test_lambada(self):
        batch_size = 8
        dataset_name = 'lambada'
        dataset_config_name = None
        data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data'))
        cache_dir = data_dir / 'lambada' / 'cache'
        max_length = 1024
        datamodule = LMDataModule(dataset_name, tokenizer_name='gpt2',
                                  dataset_config_name=dataset_config_name,
                                  max_length=max_length, cache_dir=cache_dir,
                                  add_eos=True, batch_size=batch_size,
                                  num_workers=64)
        datamodule.prepare_data()
        datamodule.setup(stage='fit')
        train_loader = datamodule.train_dataloader()
        val_loader = datamodule.val_dataloader()
        datamodule.setup(stage='test')
        test_loader = datamodule.test_dataloader()
        train_len = 9035582198
        val_len = 4434897
        test_len = 4434897
        assert len(train_loader) == div_up((train_len - 1) // max_length, batch_size)
        assert len(val_loader) == div_up((val_len - 1) // max_length, batch_size)
        assert len(test_loader) == div_up((test_len - 1) // max_length, batch_size)
        for loader in [train_loader, val_loader, test_loader]:
            x, y = next(iter(loader))
            assert x.dim() == 2
            assert x.shape == (batch_size, max_length)
            assert x.dtype == torch.long
            assert torch.allclose(x[:, 1:], y[:, :-1])

    def test_the_pile(self):
        batch_size = 8
        dataset_name = 'the_pile'
        dataset_config_name = None
        data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data'))
        cache_dir = data_dir / 'the_pile' / 'cache'
        max_length = 2048
        # Dataset is too large to fit into memory, need to use disk for concatenation
        datamodule = LMDataModule(dataset_name, tokenizer_name='gpt2',
                                  dataset_config_name=dataset_config_name,
                                  max_length=max_length, cache_dir=cache_dir,
                                  add_eos=True, batch_size=batch_size,
                                  num_workers=num_cpu_cores() // 2, use_shmem=False)
        datamodule.prepare_data()
        datamodule.setup(stage='fit')
        train_loader = datamodule.train_dataloader()
        val_loader = datamodule.val_dataloader()
        datamodule.setup(stage='test')
        test_loader = datamodule.test_dataloader()
        train_len = 374337375694
        val_len = 383326395
        test_len = 373297018
        assert len(train_loader) == div_up((train_len - 1) // max_length, batch_size)
        assert len(val_loader) == div_up((val_len - 1) // max_length, batch_size)
        assert len(test_loader) == div_up((test_len - 1) // max_length, batch_size)
        for loader in [train_loader, val_loader, test_loader]:
            x, y = next(iter(loader))
            assert x.dim() == 2
            assert x.shape == (batch_size, max_length)
            assert x.dtype == torch.long
            assert torch.allclose(x[:, 1:], y[:, :-1])

    def test_pg19(self):
        batch_size = 8
        dataset_name = 'pg19'
        dataset_config_name = None
        data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data'))
        cache_dir = data_dir / 'pg19' / 'cache'
        max_length = 2048
        # Dataset is too large to fit into memory, need to use disk for concatenation
        datamodule = LMDataModule(dataset_name, tokenizer_name='gpt2',
                                  dataset_config_name=dataset_config_name,
                                  max_length=max_length, cache_dir=cache_dir,
                                  add_eos=True, batch_size=batch_size,
                                  num_workers=num_cpu_cores() // 2)
        datamodule.prepare_data()
        datamodule.setup(stage='fit')
        train_loader = datamodule.train_dataloader()
        val_loader = datamodule.val_dataloader()
        datamodule.setup(stage='test')
        test_loader = datamodule.test_dataloader()
        train_len = 3066544128
        val_len = 4653056
        test_len = 10584064
        assert len(train_loader) == div_up((train_len - 1) // max_length, batch_size)
        assert len(val_loader) == div_up((val_len - 1) // max_length, batch_size)
        assert len(test_loader) == div_up((test_len - 1) // max_length, batch_size)
        for loader in [train_loader, val_loader, test_loader]:
            x, y = next(iter(loader))
            assert x.dim() == 2
            assert x.shape == (batch_size, max_length)
            assert x.dtype == torch.long
            assert torch.allclose(x[:, 1:], y[:, :-1])