import gradio as gr import torch from diffusers import StableDiffusionPipeline,DiffusionPipeline from diffusion_webui.utils.model_list import stable_model_list from diffusion_webui.utils.scheduler_list import ( SCHEDULER_MAPPING, get_scheduler, ) class StableDiffusionText2ImageGenerator: def __init__(self): self.pipe = None def load_model( self, stable_model_path, scheduler, ): if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler: if stable_model_path == "stabilityai/stable-diffusion-xl-base-0.9": self.pipe = DiffusionPipeline.from_pretrained( stable_model_path, safety_checker=None, torch_dtype=torch.float16 ) else: self.pipe = StableDiffusionPipeline.from_pretrained( stable_model_path, safety_checker=None, torch_dtype=torch.float16 ) self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler) self.pipe.to("cuda") self.pipe.enable_xformers_memory_efficient_attention() self.pipe.model_name = stable_model_path self.pipe.scheduler_name = scheduler return self.pipe def generate_image( self, stable_model_path: str, prompt: str, negative_prompt: str, num_images_per_prompt: int, scheduler: str, guidance_scale: int, num_inference_step: int, height: int, width: int, seed_generator=0, ): pipe = self.load_model( stable_model_path=stable_model_path, scheduler=scheduler, ) if seed_generator == 0: random_seed = torch.randint(0, 1000000, (1,)) generator = torch.manual_seed(random_seed) else: generator = torch.manual_seed(seed_generator) images = pipe( prompt=prompt, height=height, width=width, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=num_inference_step, guidance_scale=guidance_scale, generator=generator, ).images return images def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): text2image_prompt = gr.Textbox( lines=1, placeholder="Prompt", show_label=False, ) text2image_negative_prompt = gr.Textbox( lines=1, placeholder="Negative Prompt", show_label=False, ) with gr.Row(): with gr.Column(): text2image_model_path = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label="Text-Image Model Id", ) text2image_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale", ) text2image_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step", ) text2image_num_images_per_prompt = gr.Slider( minimum=1, maximum=4, step=1, value=1, label="Number Of Images", ) with gr.Row(): with gr.Column(): text2image_scheduler = gr.Dropdown( choices=list(SCHEDULER_MAPPING.keys()), value=list(SCHEDULER_MAPPING.keys())[0], label="Scheduler", ) text2image_height = gr.Slider( minimum=128, maximum=1280, step=32, value=512, label="Image Height", ) text2image_width = gr.Slider( minimum=128, maximum=1280, step=32, value=512, label="Image Width", ) text2image_seed_generator = gr.Slider( label="Seed(0 for random)", minimum=0, maximum=1000000, value=0, ) text2image_predict = gr.Button(value="Generator") with gr.Column(): output_image = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", ).style(grid=(1, 2), height=200) text2image_predict.click( fn=StableDiffusionText2ImageGenerator().generate_image, inputs=[ text2image_model_path, text2image_prompt, text2image_negative_prompt, text2image_num_images_per_prompt, text2image_scheduler, text2image_guidance_scale, text2image_num_inference_step, text2image_height, text2image_width, text2image_seed_generator, ], outputs=output_image, )