import gradio as gr import torch from diffusers import StableDiffusionImg2ImgPipeline from PIL import Image from diffusion_webui.utils.model_list import stable_model_list from diffusion_webui.utils.scheduler_list import ( SCHEDULER_MAPPING, get_scheduler, ) class StableDiffusionImage2ImageGenerator: def __init__(self): self.pipe = None def load_model(self, stable_model_path, scheduler): if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler: self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained( stable_model_path, safety_checker=None, torch_dtype=torch.float16 ) self.pipe.model_name = stable_model_path self.pipe.scheduler_name = scheduler self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler) self.pipe.to("cuda") self.pipe.enable_xformers_memory_efficient_attention() return self.pipe def generate_image( self, image_path: str, stable_model_path: str, prompt: str, negative_prompt: str, num_images_per_prompt: int, scheduler: str, guidance_scale: int, num_inference_step: int, seed_generator=0, ): pipe = self.load_model( stable_model_path=stable_model_path, scheduler=scheduler, ) if seed_generator == 0: random_seed = torch.randint(0, 1000000, (1,)) generator = torch.manual_seed(random_seed) else: generator = torch.manual_seed(seed_generator) image = Image.open(image_path) images = pipe( prompt, image=image, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=num_inference_step, guidance_scale=guidance_scale, generator=generator, ).images return images def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): image2image_image_file = gr.Image( type="filepath", label="Image" ).style(height=260) image2image_prompt = gr.Textbox( lines=1, placeholder="Prompt", show_label=False, ) image2image_negative_prompt = gr.Textbox( lines=1, placeholder="Negative Prompt", show_label=False, ) with gr.Row(): with gr.Column(): image2image_model_path = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label="Stable Model Id", ) image2image_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale", ) image2image_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step", ) with gr.Row(): with gr.Column(): image2image_scheduler = gr.Dropdown( choices=list(SCHEDULER_MAPPING.keys()), value=list(SCHEDULER_MAPPING.keys())[0], label="Scheduler", ) image2image_num_images_per_prompt = gr.Slider( minimum=1, maximum=4, step=1, value=1, label="Number Of Images", ) image2image_seed_generator = gr.Slider( minimum=0, maximum=1000000, step=1, value=0, label="Seed(0 for random)", ) image2image_predict_button = gr.Button(value="Generator") with gr.Column(): output_image = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", ).style(grid=(1, 2)) image2image_predict_button.click( fn=StableDiffusionImage2ImageGenerator().generate_image, inputs=[ image2image_image_file, image2image_model_path, image2image_prompt, image2image_negative_prompt, image2image_num_images_per_prompt, image2image_scheduler, image2image_guidance_scale, image2image_num_inference_step, image2image_seed_generator, ], outputs=[output_image], )