# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Qwen2-VL model.""" import math from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.nn import CrossEntropyLoss, LayerNorm from transformers.activations import ACT2FN from transformers.cache_utils import Cache, StaticCache from transformers.modeling_attn_mask_utils import ( AttentionMaskConverter, ) from transformers.modeling_outputs import ( BaseModelOutputWithPast, ModelOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from qwen2_vl.configuration_qwen2_vl import Qwen2VLConfig, Qwen2VLVisionConfig import traceback if is_flash_attn_2_available(): from flash_attn import flash_attn_varlen_func from ...modeling_flash_attention_utils import _flash_attention_forward else: flash_attn_varlen_func = None logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Qwen2VLConfig" @dataclass class Qwen2VLCausalLMOutputWithPast(ModelOutput): """ Base class for Qwen2VL causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): The rope index difference between sequence length and multimodal rope. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None rope_deltas: Optional[torch.LongTensor] = None # Copied from transformers.models.qwen2.modeling_qwen2.Qwen2RotaryEmbedding class Qwen2RotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_multimodal_rotary_pos_emb(q, k, cos, sin, position_ids, mrope_section, unsqueeze_dim=1): """Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/). Explanation: Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately. Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding. For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal, height and width) of text embedding is always the same, so the text embedding rotary position embedding has no difference with modern LLMs. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. mrope_section(`List(int)`): Multimodal rope section is for channel dimension of temporal, height and width in rope calculation. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids] sin = sin[position_ids] mrope_section = mrope_section * 2 cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze( unsqueeze_dim ) sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze( unsqueeze_dim ) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor: orig_dtype = tensor.dtype tensor = tensor.float() cos = freqs.cos() sin = freqs.sin() cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() output = (tensor * cos) + (rotate_half(tensor) * sin) output = output.to(orig_dtype) return output class VisionRotaryEmbedding(nn.Module): def __init__(self, dim: int, theta: float = 10000.0) -> None: super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) def forward(self, seqlen: int) -> torch.Tensor: seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) freqs = torch.outer(seq, self.inv_freq) return freqs class PatchEmbed(nn.Module): def __init__( self, patch_size: int = 14, temporal_patch_size: int = 2, in_channels: int = 3, embed_dim: int = 1152, ) -> None: super().__init__() self.patch_size = patch_size self.temporal_patch_size = temporal_patch_size self.in_channels = in_channels self.embed_dim = embed_dim kernel_size = [temporal_patch_size, patch_size, patch_size] self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: target_dtype = self.proj.weight.dtype hidden_states = hidden_states.view( -1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size ) hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) return hidden_states class PatchMerger(nn.Module): def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None: super().__init__() self.hidden_size = context_dim * (spatial_merge_size**2) self.ln_q = LayerNorm(context_dim, eps=1e-6) self.mlp = nn.Sequential( nn.Linear(self.hidden_size, self.hidden_size), nn.GELU(), nn.Linear(self.hidden_size, dim), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.mlp(self.ln_q(x).view(-1, self.hidden_size)) return x class VisionMlp(nn.Module): def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None: super().__init__() self.fc1 = nn.Linear(dim, hidden_dim) self.act = ACT2FN[hidden_act] self.fc2 = nn.Linear(hidden_dim, dim) def forward(self, x) -> torch.Tensor: return self.fc2(self.act(self.fc1(x))) class VisionAttention(nn.Module): def __init__(self, dim: int, num_heads: int = 16) -> None: super().__init__() self.num_heads = num_heads self.head_dim = dim // num_heads self.qkv = nn.Linear(dim, dim * 3, bias=True) self.proj = nn.Linear(dim, dim) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None ) -> torch.Tensor: seq_length = hidden_states.shape[0] q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) attention_mask = torch.full( [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype ) for i in range(1, len(cu_seqlens)): attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0 q = q.transpose(0, 1) k = k.transpose(0, 1) v = v.transpose(0, 1) attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim) attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) attn_output = torch.matmul(attn_weights, v) attn_output = attn_output.transpose(0, 1) attn_output = attn_output.reshape(seq_length, -1) attn_output = self.proj(attn_output) return attn_output class VisionFlashAttention2(nn.Module): def __init__(self, dim: int, num_heads: int = 16) -> None: super().__init__() self.num_heads = num_heads self.qkv = nn.Linear(dim, dim * 3, bias=True) self.proj = nn.Linear(dim, dim) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None ) -> torch.Tensor: seq_length = hidden_states.shape[0] q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( seq_length, -1 ) attn_output = self.proj(attn_output) return attn_output class VisionSdpaAttention(nn.Module): def __init__(self, dim: int, num_heads: int = 16) -> None: super().__init__() self.num_heads = num_heads self.qkv = nn.Linear(dim, dim * 3, bias=True) self.proj = nn.Linear(dim, dim) def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None ) -> torch.Tensor: seq_length = hidden_states.shape[0] q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool) for i in range(1, len(cu_seqlens)): attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True q = q.transpose(0, 1) k = k.transpose(0, 1) v = v.transpose(0, 1) attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0) attn_output = attn_output.transpose(0, 1) attn_output = attn_output.reshape(seq_length, -1) attn_output = self.proj(attn_output) return attn_output QWEN2_VL_VISION_ATTENTION_CLASSES = { "eager": VisionAttention, "flash_attention_2": VisionFlashAttention2, "sdpa": VisionSdpaAttention, } class Qwen2VLVisionBlock(nn.Module): def __init__(self, config, attn_implementation: str = "sdpa") -> None: super().__init__() self.norm1 = LayerNorm(config.embed_dim, eps=1e-6) self.norm2 = LayerNorm(config.embed_dim, eps=1e-6) mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio) self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation]( config.embed_dim, num_heads=config.num_heads ) self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act) def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor: hidden_states = hidden_states + self.attn( self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb ) hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) return hidden_states # Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, min_dtype: float, cache_position: torch.Tensor, batch_size: int, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. min_dtype (`float`): The minimum value representable with the dtype `dtype`. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask # Copied from transformers.models.qwen2.modeling_qwen2.Qwen2RMSNorm class Qwen2RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Qwen2RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" # Copied from transformers.models.qwen2.modeling_qwen2.Qwen2MLP class Qwen2MLP(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_state): return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class Qwen2VLAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.attention_dropout = config.attention_dropout self.rope_scaling = config.rope_scaling if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.rotary_emb = Qwen2RotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_multimodal_rotary_pos_emb( query_states, key_states, cos, sin, position_ids, self.rope_scaling["mrope_section"] ) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class Qwen2VLFlashAttention2(Qwen2VLAttention): """ Qwen2VL flash attention module, following Qwen2VL attention module. This module inherits from `Qwen2VLAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom config.max_window_layers layers. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ): bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # Because the input can be padded, the absolute sequence length depends on the max position id. rotary_seq_len = ( max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len ) cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) query_states, key_states = apply_multimodal_rotary_pos_emb( query_states, key_states, cos, sin, position_ids, self.rope_scaling["mrope_section"] ) if past_key_value is not None: # Activate slicing cache only if the config has a value `sliding_windows` attribute cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 if ( getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window and cache_has_contents ): slicing_tokens = 1 - self.config.sliding_window past_key = past_key_value[self.layer_idx][0] past_value = past_key_value[self.layer_idx][1] past_key = past_key[:, :, slicing_tokens:, :].contiguous() past_value = past_value[:, :, slicing_tokens:, :].contiguous() if past_key.shape[-2] != self.config.sliding_window - 1: raise ValueError( f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" f" {past_key.shape}" ) if attention_mask is not None: attention_mask = attention_mask[:, slicing_tokens:] attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) dropout_rate = 0.0 if not self.training else self.attention_dropout # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # Reashape to the expected shape for Flash Attention query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) if ( self.config.use_sliding_window and getattr(self.config, "sliding_window", None) is not None and self.layer_idx >= self.config.max_window_layers ): sliding_window = self.config.sliding_window else: sliding_window = None attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, sliding_window=sliding_window, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class Qwen2VLSdpaAttention(Qwen2VLAttention): """ Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from Qwen2Attention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "Qwen2VLModel is using Qwen2VLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_multimodal_rotary_pos_emb( query_states, key_states, cos, sin, position_ids, self.rope_scaling["mrope_section"] ) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value QWEN2_VL_ATTENTION_CLASSES = { "eager": Qwen2VLAttention, "flash_attention_2": Qwen2VLFlashAttention2, "sdpa": Qwen2VLSdpaAttention, } class Qwen2VLDecoderLayer(nn.Module): def __init__(self, config: Qwen2VLConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size if config.use_sliding_window and config._attn_implementation != "flash_attention_2": logger.warning_once( f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " "unexpected results may be encountered." ) self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) self.mlp = Qwen2MLP(config) self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs QWEN2VL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Qwen2VLConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Qwen2VL Model outputting raw hidden-states without any specific head on top.", QWEN2VL_START_DOCSTRING, ) class Qwen2VLPreTrainedModel(PreTrainedModel): config_class = Qwen2VLConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv3d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel): config_class = Qwen2VLVisionConfig _no_split_modules = ["Qwen2VLVisionBlock"] def __init__(self, config) -> None: super().__init__(config) self.spatial_merge_size = config.spatial_merge_size self.patch_embed = PatchEmbed( patch_size=config.patch_size, temporal_patch_size=config.temporal_patch_size, in_channels=config.in_channels, embed_dim=config.embed_dim, ) head_dim = config.embed_dim // config.num_heads self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2) self.blocks = nn.ModuleList( [Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)] ) self.merger = PatchMerger(dim=config.hidden_size, context_dim=config.embed_dim) def get_dtype(self) -> torch.dtype: return self.blocks[0].mlp.fc2.weight.dtype def get_device(self) -> torch.device: return self.blocks[0].mlp.fc2.weight.device def rot_pos_emb(self, grid_thw): pos_ids = [] for t, h, w in grid_thw: hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) hpos_ids = hpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ) hpos_ids = hpos_ids.permute(0, 2, 1, 3) hpos_ids = hpos_ids.flatten() wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) wpos_ids = wpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ) wpos_ids = wpos_ids.permute(0, 2, 1, 3) wpos_ids = wpos_ids.flatten() pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) pos_ids = torch.cat(pos_ids, dim=0) max_grid_size = grid_thw[:, 1:].max() rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) return rotary_pos_emb def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor: hidden_states = self.patch_embed(hidden_states) rotary_pos_emb = self.rot_pos_emb(grid_thw) cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( dim=0, dtype=torch.int32 ) cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) for blk in self.blocks: hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb) return self.merger(hidden_states) @add_start_docstrings( "The bare Qwen2VL Model outputting raw hidden-states without any specific head on top.", QWEN2VL_START_DOCSTRING, ) class Qwen2VLModel(Qwen2VLPreTrainedModel): def __init__(self, config: Qwen2VLConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Qwen2VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: # the hard coded `3` is for temporal, height and width. position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_length() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, min_dtype=min_dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask QWEN2_VL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses [`Qwen2VLImageProcessor`] for processing images. pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)): The tensors corresponding to the input videos. Pixel values can be obtained using [`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses [`Qwen2VLImageProcessor`] for processing videos. image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): The temporal, height and width of feature shape of each image in LLM. video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): The temporal, height and width of feature shape of each video in LLM. rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): The rope index difference between sequence length and multimodal rope. """ class Qwen2VLForConditionalGeneration(Qwen2VLPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.visual = Qwen2VisionTransformerPretrainedModel._from_config( config.vision_config, attn_implementation=config._attn_implementation ) self.model = Qwen2VLModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.padding_side = "left" # set it to left by default, user can use setter to change padding_sides # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def get_rope_index( self, input_ids: torch.LongTensor, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Calculate the 3D rope index based on image and video's temporal, height and width in LLM. Explanation: Each embedding sequence contains vision embedding and text embedding or just contains text embedding. For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs. Examples: input_ids: [T T T T T], here T is for text. temporal position_ids: [0, 1, 2, 3, 4] height position_ids: [0, 1, 2, 3, 4] width position_ids: [0, 1, 2, 3, 4] For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part and 1D rotary position embeddin for text part. Examples: Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches. input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] text temporal position_ids: [3, 4, 5, 6, 7] text height position_ids: [3, 4, 5, 6, 7] text width position_ids: [3, 4, 5, 6, 7] Here we calculate the text start position_ids as the max vision position_ids plus 1. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): The temporal, height and width of feature shape of each image in LLM. video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): The temporal, height and width of feature shape of each video in LLM. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) """ spatial_merge_size = self.config.vision_config.spatial_merge_size image_token_id = self.config.image_token_id video_token_id = self.config.video_token_id vision_start_token_id = self.config.vision_start_token_id mrope_position_deltas = [] if image_grid_thw is not None or video_grid_thw is not None: total_input_ids = input_ids position_ids = torch.ones( 3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device ) image_index, video_index = 0, 0 for i, input_ids in enumerate(total_input_ids): if attention_mask is not None: input_ids = input_ids[attention_mask[i] == 1] image_nums, video_nums = 0, 0 vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) vision_tokens = input_ids[vision_start_indices + 1] image_nums = (vision_tokens == image_token_id).sum() video_nums = (vision_tokens == video_token_id).sum() input_tokens = input_ids.tolist() llm_pos_ids_list: list = [] st = 0 remain_images, remain_videos = image_nums, video_nums for _ in range(image_nums + video_nums): if image_token_id in input_tokens and remain_images > 0: ed_image = input_tokens.index(image_token_id, st) else: ed_image = len(input_tokens) + 1 if video_token_id in input_tokens and remain_videos > 0: ed_video = input_tokens.index(video_token_id, st) else: ed_video = len(input_tokens) + 1 if ed_image < ed_video: t, h, w = ( image_grid_thw[image_index][0], image_grid_thw[image_index][1], image_grid_thw[image_index][2], ) image_index += 1 remain_images -= 1 ed = ed_image else: t, h, w = ( video_grid_thw[video_index][0], video_grid_thw[video_index][1], video_grid_thw[video_index][2], ) video_index += 1 remain_videos -= 1 ed = ed_video llm_grid_t, llm_grid_h, llm_grid_w = ( t.item(), h.item() // spatial_merge_size, w.item() // spatial_merge_size, ) text_len = ed - st st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) st = ed + llm_grid_t * llm_grid_h * llm_grid_w if st < len(input_tokens): st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 text_len = len(input_tokens) - st llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) return position_ids, mrope_position_deltas else: if attention_mask is not None: position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device) max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] else: position_ids = ( torch.arange(input_ids.shape[1], device=input_ids.device) .view(1, 1, -1) .expand(3, input_ids.shape[0], -1) ) mrope_position_deltas = torch.zeros( [input_ids.shape[0], 1], device=input_ids.device, dtype=input_ids.dtype, ) return position_ids, mrope_position_deltas def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, num_new_tokens: int = 1, ) -> Dict[str, Any]: model_kwargs = super()._update_model_kwargs_for_generation( outputs=outputs, model_kwargs=model_kwargs, is_encoder_decoder=is_encoder_decoder, num_new_tokens=num_new_tokens, ) if getattr(outputs, "rope_deltas", None) is not None: model_kwargs["rope_deltas"] = outputs.rope_deltas return model_kwargs @add_start_docstrings_to_model_forward(QWEN2_VL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Qwen2VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, pixel_values_videos: Optional[torch.FloatTensor] = None, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None, rope_deltas: Optional[torch.LongTensor] = None, ) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration >>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") >>> messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos]) >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is None: inputs_embeds = self.model.embed_tokens(input_ids) if pixel_values is not None: pixel_values = pixel_values.type(self.visual.get_dtype()) image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device) image_mask = input_ids == self.config.image_token_id if self.training: inputs_embeds = inputs_embeds.clone() inputs_embeds[image_mask] = image_embeds if pixel_values_videos is not None: pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype()) video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device) video_mask = input_ids == self.config.video_token_id inputs_embeds[video_mask] = video_embeds if attention_mask is not None: attention_mask = attention_mask.to(inputs_embeds.device) outputs = self.model( input_ids=None, position_ids=position_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return Qwen2VLCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, rope_deltas=rope_deltas, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, pixel_values=None, pixel_values_videos=None, image_grid_thw=None, video_grid_thw=None, **kwargs, ): # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here if past_key_values is not None: if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] rope_deltas = kwargs.get("rope_deltas", None) if attention_mask is not None and position_ids is None: if cache_position is None or (cache_position is not None and cache_position[0] == 0): position_ids, rope_deltas = self.get_rope_index( input_ids, image_grid_thw, video_grid_thw, attention_mask ) else: batch_size, seq_length = input_ids.shape delta = ( cache_position[0] + rope_deltas if cache_position is not None and rope_deltas is not None else 0 ) position_ids = torch.arange(seq_length, device=input_ids.device) position_ids = position_ids.view(1, -1).expand(batch_size, -1) position_ids = position_ids.add(delta) position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) if cache_position[0] != 0: pixel_values = None pixel_values_videos = None # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and cache_position[0] == 0: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: if inputs_embeds is not None: batch_size, sequence_length = inputs_embeds.shape device = inputs_embeds.device else: batch_size, sequence_length = input_ids.shape device = input_ids.device dtype = self.lm_head.weight.dtype min_dtype = torch.finfo(dtype).min attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=past_key_values.get_max_length(), dtype=dtype, device=device, min_dtype=min_dtype, cache_position=cache_position, batch_size=batch_size, ) model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, "pixel_values": pixel_values, "pixel_values_videos": pixel_values_videos, "image_grid_thw": image_grid_thw, "video_grid_thw": video_grid_thw, "rope_deltas": rope_deltas, } ) return model_inputs class Qwen2VLSimplifiedModel(Qwen2VLPreTrainedModel): def __init__(self, config): super().__init__(config) self.visual = Qwen2VisionTransformerPretrainedModel._from_config( config.vision_config, attn_implementation=config._attn_implementation ) self.model = Qwen2VLModel(config) self.hidden_size = config.hidden_size # 初始化权重 self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder=False, num_new_tokens=1): # 移除生成相关的更新逻辑 return model_kwargs def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, pixel_values_videos: Optional[torch.FloatTensor] = None, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is None: inputs_embeds = self.model.embed_tokens(input_ids) if pixel_values is not None: image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device) image_mask = input_ids == self.config.image_token_id inputs_embeds[image_mask] = image_embeds if attention_mask is not None: attention_mask = attention_mask.to(inputs_embeds.device) if position_ids is None: position_ids, _ = self.get_rope_index(input_ids, image_grid_thw, video_grid_thw, attention_mask) outputs = self.model( input_ids=None, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] return hidden_states, image_mask, image_grid_thw def get_rope_index( self, input_ids: torch.LongTensor, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Calculate the 3D rope index based on image and video's temporal, height and width in LLM. Explanation: Each embedding sequence contains vision embedding and text embedding or just contains text embedding. For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs. Examples: input_ids: [T T T T T], here T is for text. temporal position_ids: [0, 1, 2, 3, 4] height position_ids: [0, 1, 2, 3, 4] width position_ids: [0, 1, 2, 3, 4] For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part and 1D rotary position embeddin for text part. Examples: Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches. input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] text temporal position_ids: [3, 4, 5, 6, 7] text height position_ids: [3, 4, 5, 6, 7] text width position_ids: [3, 4, 5, 6, 7] Here we calculate the text start position_ids as the max vision position_ids plus 1. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): The temporal, height and width of feature shape of each image in LLM. video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): The temporal, height and width of feature shape of each video in LLM. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) """ spatial_merge_size = self.config.vision_config.spatial_merge_size image_token_id = self.config.image_token_id video_token_id = self.config.video_token_id vision_start_token_id = self.config.vision_start_token_id mrope_position_deltas = [] if image_grid_thw is not None or video_grid_thw is not None: total_input_ids = input_ids position_ids = torch.ones( 3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device ) image_index, video_index = 0, 0 for i, input_ids in enumerate(total_input_ids): if attention_mask is not None: input_ids = input_ids[attention_mask[i] == 1] image_nums, video_nums = 0, 0 vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) vision_tokens = input_ids[vision_start_indices + 1] image_nums = (vision_tokens == image_token_id).sum() video_nums = (vision_tokens == video_token_id).sum() input_tokens = input_ids.tolist() llm_pos_ids_list: list = [] st = 0 remain_images, remain_videos = image_nums, video_nums for _ in range(image_nums + video_nums): if image_token_id in input_tokens and remain_images > 0: ed_image = input_tokens.index(image_token_id, st) else: ed_image = len(input_tokens) + 1 if video_token_id in input_tokens and remain_videos > 0: ed_video = input_tokens.index(video_token_id, st) else: ed_video = len(input_tokens) + 1 if ed_image < ed_video: t, h, w = ( image_grid_thw[image_index][0], image_grid_thw[image_index][1], image_grid_thw[image_index][2], ) image_index += 1 remain_images -= 1 ed = ed_image else: t, h, w = ( video_grid_thw[video_index][0], video_grid_thw[video_index][1], video_grid_thw[video_index][2], ) video_index += 1 remain_videos -= 1 ed = ed_video llm_grid_t, llm_grid_h, llm_grid_w = ( t.item(), h.item() // spatial_merge_size, w.item() // spatial_merge_size, ) text_len = ed - st st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) st = ed + llm_grid_t * llm_grid_h * llm_grid_w if st < len(input_tokens): st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 text_len = len(input_tokens) - st llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) return position_ids, mrope_position_deltas else: if attention_mask is not None: position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device) max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] else: position_ids = ( torch.arange(input_ids.shape[1], device=input_ids.device) .view(1, 1, -1) .expand(3, input_ids.shape[0], -1) ) mrope_position_deltas = torch.zeros( [input_ids.shape[0], 1], device=input_ids.device, dtype=input_ids.dtype, ) return position_ids, mrope_position_deltas