import os from PIL import Image import random import shutil import datetime import torchvision.transforms.functional as f import torch from typing import Optional, Tuple from threading import Lock from langchain import ConversationChain from chat_anything.tts_talker.tts_edge import TTSTalker from chat_anything.sad_talker.sad_talker import SadTalker from chat_anything.chatbot.chat import load_chain from chat_anything.chatbot.select import model_selection_chain from chat_anything.chatbot.voice_select import voice_selection_chain import gradio as gr TALKING_HEAD_WIDTH = "350" sadtalker_checkpoint_path = "MODELS/SadTalker" config_path = "chat_anything/sad_talker/config" class ChatWrapper: def __init__(self): self.lock = Lock() self.sad_talker = SadTalker( sadtalker_checkpoint_path, config_path, lazy_load=True) def __call__( self, api_key: str, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain], speak_text: bool, talking_head: bool, uid: str, talker : None, fullbody : str, ): """Execute the chat functionality.""" self.lock.acquire() if chain is None: history.append((inp, "Please register with your API key first!")) else: try: print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") print("inp: " + inp) print("speak_text: ", speak_text) print("talking_head: ", talking_head) history = history or [] # If chain is None, that is because no API key was provided. output = "Please paste your OpenAI key from openai.com to use this app. " + \ str(datetime.datetime.now()) output = chain.predict(input=inp).strip() output = output.replace("\n", "\n\n") text_to_display = output # #预定义一个talker # talker = MaleEn() history.append((inp, text_to_display)) html_video, temp_file, html_audio, temp_aud_file = None, None, None, None if speak_text: if talking_head: html_video, temp_file = self.do_html_video_speak( talker, output, fullbody, uid) else: html_audio, temp_aud_file = self.do_html_audio_speak( talker, output,uid) else: if talking_head: temp_file = os.path.join('tmp', uid, 'videos') html_video = create_html_video( temp_file, TALKING_HEAD_WIDTH) else: pass except Exception as e: raise e finally: self.lock.release() return history, history, html_video, temp_file, html_audio, temp_aud_file, "" def do_html_audio_speak(self,talker, words_to_speak, uid): audio_path = os.path.join('tmp', uid, 'audios') print('uid:', uid, ":", words_to_speak) audo_file_path = talker.test(text=words_to_speak, audio_path=audio_path) html_audio = '
no audio' try: temp_aud_file = gr.File(audo_file_path) print("audio-----------------------------------------------------success") temp_aud_file_url = "/file=" + temp_aud_file.value['name'] html_audio = f'' except IOError as error: # Could not write to file, exit gracefully print(error) return None, None return html_audio, audo_file_path def do_html_video_speak(self,talker,words_to_speak,fullbody, uid): if fullbody: # preprocess='somthing' preprocess='full' else: preprocess='crop' print("success") video_path = os.path.join('tmp', uid, 'videos') if not os.path.exists(video_path): os.makedirs(video_path) video_file_path = os.path.join(video_path, 'tempfile.mp4') _, audio_path = self.do_html_audio_speak( talker,words_to_speak,uid) face_file_path = os.path.join('tmp', uid, 'images', 'test.jpg') video = self.sad_talker.test(face_file_path, audio_path,preprocess, uid=uid) #video_file_path print("---------------------------------------------------------success") print(f"moving {video} -> {video_file_path}") shutil.move(video, video_file_path) return video_file_path, video_file_path def generate_init_face_video(self,class_concept="clock", llm=None,uid=None,fullbody=None, ref_image=None, seed=None): """ """ print('generate concept of', class_concept) print("=================================================") print('fullbody:', fullbody) print('uid:', uid) print("==================================================") chain, memory, personality_text = load_chain(llm, class_concept) model_conf, selected_model = model_selection_chain(llm, class_concept, conf_file='resources/models.yaml') # use class concept to choose a generating model, otherwise crack down # model_conf, selected_model = model_selection_chain(llm, personality_text, conf_file='resources/models_personality.yaml') # use class concept to choose a generating model, otherwise crack down voice_conf, selected_voice = model_selection_chain(llm, personality_text, conf_file='resources/voices_edge.yaml') # added for safe face generation print('generate concept of', class_concept) augment_word_list = ["Female ", "female ", "beautiful ", "small ", "cute "] first_sentence = "Hello, how are you doing today?" voice_conf, selected_voice = model_selection_chain(llm, personality_text, conf_file='resources/voices_edge.yaml') talker = TTSTalker(selected_voice=selected_voice, gender=voice_conf['gender'], language=voice_conf['language']) model_conf, selected_model = model_selection_chain(llm, class_concept, conf_file='resources/models.yaml') # use class concept to choose a generating model, otherwise crack down retry_cnt = 4 if ref_image is None: face_files = os.listdir(FACE_DIR) face_img_path = os.path.join(FACE_DIR, random.choice(face_files)) ref_image = Image.open(face_img_path) print('loading face generating model') anything_facemaker = load_face_generator( model_dir=model_conf['model_dir'], lora_path=model_conf['lora_path'], prompt_template=model_conf['prompt_template'], negative_prompt=model_conf['negative_prompt'], ) retry_cnt = 0 has_face = anything_facemaker.has_face(ref_image) init_strength = 1.0 if has_face else 0.85 strength_retry_step = -0.04 if has_face else 0.04 while retry_cnt < 8: try: generate_face_image( anything_facemaker, class_concept, ref_image, uid=uid, strength=init_strength if (retry_cnt==0 and has_face) else init_strength + retry_cnt * strength_retry_step, controlnet_conditioning_scale=0.5 if retry_cnt == 8 else 0.3, seed=seed, ) self.do_html_video_speak(talker, first_sentence, fullbody, uid=uid) video_file_path = os.path.join('tmp', uid, 'videos/tempfile.mp4') htm_video = create_html_video( video_file_path, TALKING_HEAD_WIDTH) break except Exception as e: retry_cnt += 1 class_concept = random.choice(augment_word_list) + class_concept print(e) # end of repeat block return chain, memory, htm_video, talker def update_talking_head(self, widget, uid, state): print("success----------------") if widget: state = widget temp_file = os.path.join('tmp', uid, 'videos') video_html_talking_head = create_html_video( temp_file, TALKING_HEAD_WIDTH) return state, video_html_talking_head else: return None, "" def reset_memory(history, memory): memory.clear() history = [] return history, history, memory def create_html_video(file_name, width): return file_name def create_html_audio(file_name): if os.path.exists(file_name): tmp_audio_file = gr.File(file_name, visible=False) tmp_aud_file_url = "/file=" + tmp_audio_file.value['name'] html_audio = f'' del tmp_aud_file_url else: html_audio = f'' return html_audio def update_foo(widget, state): if widget: state = widget return state # Pertains to question answering functionality def update_use_embeddings(widget, state): if widget: state = widget return state # This is the code for image generating. def load_face_generator(model_dir, lora_path, prompt_template, negative_prompt): from chat_anything.face_generator.long_prompt_control_generator import LongPromptControlGenerator # # using local model_zoo = "MODELS" face_control_dir = os.path.join( model_zoo, "Face-Landmark-ControlNet", "models_for_diffusers") face_detect_path = os.path.join( model_zoo, "SadTalker", "shape_predictor_68_face_landmarks.dat") # use remote, hugginface auto-download. # use your model path, has to be a model derived from stable diffusion v1-5 anything_facemaker = LongPromptControlGenerator( model_dir=model_dir, lora_path=lora_path, prompt_template=prompt_template, negative_prompt=negative_prompt, face_control_dir=face_control_dir, face_detect_path=face_detect_path, ) anything_facemaker.load_model(safety_checker=None) return anything_facemaker FACE_DIR="resources/images/faces" def generate_face_image( anything_facemaker, class_concept, face_img_pil, uid=None, controlnet_conditioning_scale=1.0, strength=0.95, seed=42, ): face_img_pil = f.center_crop( f.resize(face_img_pil, 512), 512).convert('RGB') prompt = anything_facemaker.prompt_template.format(class_concept) # # There are four ways to generate a image by now. # pure_generate = anything_facemaker.generate(prompt=prompt, image=face_img_pil, do_inversion=False) # inversion = anything_facemaker.generate(prompt=prompt, image=face_img_pil, strength=strength, do_inversion=True) print('USING SEED:', seed) generator = torch.Generator(device=anything_facemaker.face_control_pipe.device) generator.manual_seed(seed) if strength is None: pure_control = anything_facemaker.face_control_generate(prompt=prompt, face_img_pil=face_img_pil, do_inversion=False, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator) init_face_pil = pure_control else: control_inversion = anything_facemaker.face_control_generate(prompt=prompt, face_img_pil=face_img_pil, do_inversion=True, strength=strength, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator) init_face_pil = control_inversion print('succeeded generating face image') face_path = os.path.join('tmp', uid, 'images') if not os.path.exists(face_path): os.makedirs(face_path) # TODO: reproduce the images for return, shouldn't use the filesystem face_file_path = os.path.join(face_path, 'test.jpg') init_face_pil.save(face_file_path) return init_face_pil