File size: 27,569 Bytes
ba5dcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Usage as a simple differentiable segmenter base class

import os, torch, numpy, json, glob
import skimage.morphology
from collections import OrderedDict
from netdissect import upsegmodel
from netdissect import segmodel as segmodel_module
from netdissect.easydict import EasyDict
from urllib.request import urlretrieve

class BaseSegmenter:
    def get_label_and_category_names(self):
        '''
        Returns two lists: first, a list of tuples [(label, category), ...]
        where the label and category are human-readable strings indicating
        the meaning of a segmentation class.  The 0th segmentation class
        should be reserved for a label ('-') that means "no prediction."
        The second list should just be a list of [category,...] listing
        all categories in a canonical order.
        '''
        raise NotImplemented()

    def segment_batch(self, tensor_images, downsample=1):
        '''
        Returns a multilabel segmentation for the given batch of (RGB [-1...1])
        images.  Each pixel of the result is a torch.long indicating a
        predicted class number.  Multiple classes can be predicted for
        the same pixel: output shape is (n, multipred, y, x), where
        multipred is 3, 5, or 6, for how many different predicted labels can
        be given for each pixel (depending on whether subdivision is being
        used).  If downsample is specified, then the output y and x dimensions
        are downsampled from the original image.
        '''
        raise NotImplemented()

    def predict_single_class(self, tensor_images, classnum, downsample=1):
        '''
        Given a batch of images (RGB, normalized to [-1...1]) and
        a specific segmentation class number, returns a tuple with
           (1) a differentiable ([0..1]) prediction score for the class
               at every pixel of the input image.
           (2) a binary mask showing where in the input image the
               specified class is the best-predicted label for the pixel.
        Does not work on subdivided labels.
        '''
        raise NotImplemented()

class UnifiedParsingSegmenter(BaseSegmenter):
    '''
    This is a wrapper for a more complicated multi-class segmenter,
    as described in https://arxiv.org/pdf/1807.10221.pdf, and as
    released in https://github.com/CSAILVision/unifiedparsing.
    For our purposes and to simplify processing, we do not use
    whole-scene predictions, and we only consume part segmentations
    for the three largest object classes (sky, building, person).
    '''

    def __init__(self, segsizes=None, segdiv=None):
        # Create a segmentation model
        if segsizes is None:
            segsizes = [256]
        if segdiv == None:
            segdiv = 'undivided'
        segvocab = 'upp'
        segarch = ('resnet50', 'upernet')
        epoch = 40
        segmodel = load_unified_parsing_segmentation_model(
                segarch, segvocab, epoch)
        segmodel.cuda()
        self.segmodel = segmodel
        self.segsizes = segsizes
        self.segdiv = segdiv
        mult = 1
        if self.segdiv == 'quad':
            mult = 5
        self.divmult = mult
        # Assign class numbers for parts.
        first_partnumber = (
                (len(segmodel.labeldata['object']) - 1) * mult + 1 +
                (len(segmodel.labeldata['material']) - 1))
        # We only use parts for these three types of objects, for efficiency.
        partobjects = ['sky', 'building', 'person']
        partnumbers = {}
        partnames = []
        objectnumbers = {k: v
                for v, k in enumerate(segmodel.labeldata['object'])}
        part_index_translation = []
        # We merge some classes.  For example "door" is both an object
        # and a part of a building.  To avoid confusion, we just count
        # such classes as objects, and add part scores to the same index.
        for owner in partobjects:
            part_list = segmodel.labeldata['object_part'][owner]
            numeric_part_list = []
            for part in part_list:
                if part in objectnumbers:
                    numeric_part_list.append(objectnumbers[part])
                elif part in partnumbers:
                    numeric_part_list.append(partnumbers[part])
                else:
                    partnumbers[part] = len(partnames) + first_partnumber
                    partnames.append(part)
                    numeric_part_list.append(partnumbers[part])
            part_index_translation.append(torch.tensor(numeric_part_list))
        self.objects_with_parts = [objectnumbers[obj] for obj in partobjects]
        self.part_index = part_index_translation
        self.part_names = partnames
        # For now we'll just do object and material labels.
        self.num_classes = 1 + (
                len(segmodel.labeldata['object']) - 1) * mult + (
                len(segmodel.labeldata['material']) - 1) + len(partnames)
        self.num_object_classes = len(self.segmodel.labeldata['object']) - 1

    def get_label_and_category_names(self, dataset=None):
        '''
        Lists label and category names.
        '''
        # Labels are ordered as follows:
        # 0, [object labels] [divided object labels] [materials] [parts]
        # The zero label is reserved to mean 'no prediction'.
        if self.segdiv == 'quad':
            suffixes = ['t', 'l', 'b', 'r']
        else:
            suffixes = []
        divided_labels = []
        for suffix in suffixes:
            divided_labels.extend([('%s-%s' % (label, suffix), 'part')
                for label in self.segmodel.labeldata['object'][1:]])
        # Create the whole list of labels
        labelcats = (
                [(label, 'object')
                    for label in self.segmodel.labeldata['object']] +
                divided_labels +
                [(label, 'material')
                    for label in self.segmodel.labeldata['material'][1:]] +
                [(label, 'part') for label in self.part_names])
        return labelcats, ['object', 'part', 'material']

    def raw_seg_prediction(self, tensor_images, downsample=1):
        '''
        Generates a segmentation by applying multiresolution voting on
        the segmentation model, using (rounded to 32 pixels) a set of
        resolutions in the example benchmark code.
        '''
        y, x = tensor_images.shape[2:]
        b = len(tensor_images)
        tensor_images = (tensor_images + 1) / 2 * 255
        tensor_images = torch.flip(tensor_images, (1,)) # BGR!!!?
        tensor_images -= torch.tensor([102.9801, 115.9465, 122.7717]).to(
                   dtype=tensor_images.dtype, device=tensor_images.device
                   )[None,:,None,None]
        seg_shape = (y // downsample, x // downsample)
        # We want these to be multiples of 32 for the model.
        sizes = [(s, s) for s in self.segsizes]
        pred = {category: torch.zeros(
            len(tensor_images), len(self.segmodel.labeldata[category]),
            seg_shape[0], seg_shape[1]).cuda()
            for category in ['object', 'material']}
        part_pred = {partobj_index: torch.zeros(
            len(tensor_images), len(partindex),
            seg_shape[0], seg_shape[1]).cuda()
            for partobj_index, partindex in enumerate(self.part_index)}
        for size in sizes:
            if size == tensor_images.shape[2:]:
                resized = tensor_images
            else:
                resized = torch.nn.AdaptiveAvgPool2d(size)(tensor_images)
            r_pred = self.segmodel(
                dict(img=resized), seg_size=seg_shape)
            for k in pred:
                pred[k] += r_pred[k]
            for k in part_pred:
                part_pred[k] += r_pred['part'][k]
        return pred, part_pred

    def segment_batch(self, tensor_images, downsample=1):
        '''
        Returns a multilabel segmentation for the given batch of (RGB [-1...1])
        images.  Each pixel of the result is a torch.long indicating a
        predicted class number.  Multiple classes can be predicted for
        the same pixel: output shape is (n, multipred, y, x), where
        multipred is 3, 5, or 6, for how many different predicted labels can
        be given for each pixel (depending on whether subdivision is being
        used).  If downsample is specified, then the output y and x dimensions
        are downsampled from the original image.
        '''
        pred, part_pred = self.raw_seg_prediction(tensor_images,
                downsample=downsample)
        piece_channels = 2 if self.segdiv == 'quad' else 0
        y, x = tensor_images.shape[2:]
        seg_shape = (y // downsample, x // downsample)
        segs = torch.zeros(len(tensor_images), 3 + piece_channels,
                seg_shape[0], seg_shape[1],
                dtype=torch.long, device=tensor_images.device)
        _, segs[:,0] = torch.max(pred['object'], dim=1)
        # Get materials and translate to shared numbering scheme
        _, segs[:,1] = torch.max(pred['material'], dim=1)
        maskout = (segs[:,1] == 0)
        segs[:,1] += (len(self.segmodel.labeldata['object']) - 1) * self.divmult
        segs[:,1][maskout] = 0
        # Now deal with subparts of sky, buildings, people
        for i, object_index in enumerate(self.objects_with_parts):
            trans = self.part_index[i].to(segs.device)
            # Get the argmax, and then translate to shared numbering scheme
            seg = trans[torch.max(part_pred[i], dim=1)[1]]
            # Only trust the parts where the prediction also predicts the
            # owning object.
            mask = (segs[:,0] == object_index)
            segs[:,2][mask] = seg[mask]

        if self.segdiv == 'quad':
            segs = self.expand_segment_quad(segs, self.segdiv)
        return segs

    def predict_single_class(self, tensor_images, classnum, downsample=1):
        '''
        Given a batch of images (RGB, normalized to [-1...1]) and
        a specific segmentation class number, returns a tuple with
           (1) a differentiable ([0..1]) prediction score for the class
               at every pixel of the input image.
           (2) a binary mask showing where in the input image the
               specified class is the best-predicted label for the pixel.
        Does not work on subdivided labels.
        '''
        result = 0
        pred, part_pred = self.raw_seg_prediction(tensor_images,
                downsample=downsample)
        material_offset = (len(self.segmodel.labeldata['object']) - 1
            ) * self.divmult
        if material_offset < classnum < material_offset + len(
                self.segmodel.labeldata['material']):
            return (
                pred['material'][:, classnum - material_offset],
                pred['material'].max(dim=1)[1] == classnum - material_offset)
        mask = None
        if classnum < len(self.segmodel.labeldata['object']):
            result = pred['object'][:, classnum]
            mask = (pred['object'].max(dim=1)[1] == classnum)
        # Some objects, like 'door', are also a part of other objects,
        # so add the part prediction also.
        for i, object_index in enumerate(self.objects_with_parts):
            local_index = (self.part_index[i] == classnum).nonzero()
            if len(local_index) == 0:
                continue
            local_index = local_index.item()
            # Ignore part predictions outside the mask. (We could pay
            # atttention to and penalize such predictions.)
            mask2 = (pred['object'].max(dim=1)[1] == object_index) * (
                    part_pred[i].max(dim=1)[1] == local_index)
            if mask is None:
                mask = mask2
            else:
                mask = torch.max(mask, mask2)
            result = result + (part_pred[i][:, local_index])
        assert result is not 0, 'unrecognized class %d' % classnum
        return result, mask

    def expand_segment_quad(self, segs, segdiv='quad'):
        shape = segs.shape
        segs[:,3:] = segs[:,0:1] # start by copying the object channel
        num_seg_labels = self.num_object_classes
        # For every connected component present (using generator)
        for i, mask in component_masks(segs[:,0:1]):
            # Figure the bounding box of the label
            top, bottom = mask.any(dim=1).nonzero()[[0, -1], 0]
            left, right = mask.any(dim=0).nonzero()[[0, -1], 0]
            # Chop the bounding box into four parts
            vmid = (top + bottom + 1) // 2
            hmid = (left + right + 1) // 2
            # Construct top, bottom, right, left masks
            quad_mask = mask[None,:,:].repeat(4, 1, 1)
            quad_mask[0, vmid:, :] = 0   # top
            quad_mask[1, :, hmid:] = 0   # right
            quad_mask[2, :vmid, :] = 0   # bottom
            quad_mask[3, :, :hmid] = 0   # left
            quad_mask = quad_mask.long()
            # Modify extra segmentation labels by offsetting
            segs[i,3,:,:] += quad_mask[0] * num_seg_labels
            segs[i,4,:,:] += quad_mask[1] * (2 * num_seg_labels)
            segs[i,3,:,:] += quad_mask[2] * (3 * num_seg_labels)
            segs[i,4,:,:] += quad_mask[3] * (4 * num_seg_labels)
        # remove any components that were too small to subdivide
        mask = segs[:,3:] <= self.num_object_classes
        segs[:,3:][mask] = 0
        return segs

class SemanticSegmenter(BaseSegmenter):
    def __init__(self, modeldir=None, segarch=None, segvocab=None,
            segsizes=None, segdiv=None, epoch=None):
        # Create a segmentation model
        if modeldir == None:
            modeldir = 'dataset/segmodel'
        if segvocab == None:
            segvocab = 'baseline'
        if segarch == None:
            segarch = ('resnet50_dilated8', 'ppm_bilinear_deepsup')
        if segdiv == None:
            segdiv = 'undivided'
        elif isinstance(segarch, str):
            segarch = segarch.split(',')
        segmodel = load_segmentation_model(modeldir, segarch, segvocab, epoch)
        if segsizes is None:
            segsizes = getattr(segmodel.meta, 'segsizes', [256])
        self.segsizes = segsizes
        # Verify segmentation model to has every out_channel labeled.
        assert len(segmodel.meta.labels) == list(c for c in segmodel.modules()
            if isinstance(c, torch.nn.Conv2d))[-1].out_channels
        segmodel.cuda()
        self.segmodel = segmodel
        self.segdiv = segdiv
        # Image normalization
        self.bgr = (segmodel.meta.imageformat.byteorder == 'BGR')
        self.imagemean = torch.tensor(segmodel.meta.imageformat.mean)
        self.imagestd = torch.tensor(segmodel.meta.imageformat.stdev)
        # Map from labels to external indexes, and labels to channel sets.
        self.labelmap = {'-': 0}
        self.channelmap = {'-': []}
        self.labels = [('-', '-')]
        num_labels = 1
        self.num_underlying_classes = len(segmodel.meta.labels)
        # labelmap maps names to external indexes.
        for i, label in enumerate(segmodel.meta.labels):
            if label.name not in self.channelmap:
                self.channelmap[label.name] = []
            self.channelmap[label.name].append(i)
            if getattr(label, 'internal', None) or label.name in self.labelmap:
                continue
            self.labelmap[label.name] = num_labels
            num_labels += 1
            self.labels.append((label.name, label.category))
        # Each category gets its own independent softmax.
        self.category_indexes = { category.name:
                [i for i, label in enumerate(segmodel.meta.labels)
                   if label.category == category.name] 
                for category in segmodel.meta.categories }
        # catindexmap maps names to category internal indexes
        self.catindexmap = {}
        for catname, indexlist in self.category_indexes.items():
            for index, i in enumerate(indexlist):
                self.catindexmap[segmodel.meta.labels[i].name] = (
                        (catname, index))
        # After the softmax, each category is mapped to external indexes.
        self.category_map = { catname:
                torch.tensor([
                    self.labelmap.get(segmodel.meta.labels[ind].name, 0)
                    for ind in catindex])
                for catname, catindex in self.category_indexes.items()}
        self.category_rules = segmodel.meta.categories
        # Finally, naive subdivision can be applied.
        mult = 1
        if self.segdiv == 'quad':
            mult = 5
            suffixes = ['t', 'l', 'b', 'r']
            divided_labels = []
            for suffix in suffixes:
                divided_labels.extend([('%s-%s' % (label, suffix), cat)
                    for label, cat in self.labels[1:]])
                self.channelmap.update({
                    '%s-%s' % (label, suffix): self.channelmap[label]
                    for label, cat in self.labels[1:] })
            self.labels.extend(divided_labels)
        # For examining a single class
        self.channellist = [self.channelmap[name] for name, _ in self.labels]

    def get_label_and_category_names(self, dataset=None):
        return self.labels, self.segmodel.categories

    def segment_batch(self, tensor_images, downsample=1):
        return self.raw_segment_batch(tensor_images, downsample)[0]

    def raw_segment_batch(self, tensor_images, downsample=1):
        pred = self.raw_seg_prediction(tensor_images, downsample)
        catsegs = {}
        for catkey, catindex in self.category_indexes.items():
            _, segs = torch.max(pred[:, catindex], dim=1)
            catsegs[catkey] = segs
        masks = {}
        segs = torch.zeros(len(tensor_images), len(self.category_rules),
                pred.shape[2], pred.shape[2], device=pred.device,
                dtype=torch.long)
        for i, cat in enumerate(self.category_rules):
            catmap = self.category_map[cat.name].to(pred.device)
            translated = catmap[catsegs[cat.name]]
            if getattr(cat, 'mask', None) is not None:
                if cat.mask not in masks:
                    maskcat, maskind = self.catindexmap[cat.mask]
                    masks[cat.mask] = (catsegs[maskcat] == maskind)
                translated *= masks[cat.mask].long()
            segs[:,i] = translated
        if self.segdiv == 'quad':
            segs = self.expand_segment_quad(segs,
                    self.num_underlying_classes, self.segdiv)
        return segs, pred

    def raw_seg_prediction(self, tensor_images, downsample=1):
        '''
        Generates a segmentation by applying multiresolution voting on
        the segmentation model, using (rounded to 32 pixels) a set of
        resolutions in the example benchmark code.
        '''
        y, x = tensor_images.shape[2:]
        b = len(tensor_images)
        # Flip the RGB order if specified.
        if self.bgr:
           tensor_images = torch.flip(tensor_images, (1,))
        # Transform from our [-1..1] range to torch standard [0..1] range
        # and then apply normalization.
        tensor_images = ((tensor_images + 1) / 2
                ).sub_(self.imagemean[None,:,None,None].to(tensor_images.device)
                ).div_(self.imagestd[None,:,None,None].to(tensor_images.device))
        # Output shape can be downsampled.
        seg_shape = (y // downsample, x // downsample)
        # We want these to be multiples of 32 for the model.
        sizes = [(s, s) for s in self.segsizes]
        pred = torch.zeros(
            len(tensor_images), (self.num_underlying_classes),
            seg_shape[0], seg_shape[1]).cuda()
        for size in sizes:
            if size == tensor_images.shape[2:]:
                resized = tensor_images
            else:
                resized = torch.nn.AdaptiveAvgPool2d(size)(tensor_images)
            raw_pred = self.segmodel(
                dict(img_data=resized), segSize=seg_shape)
            softmax_pred = torch.empty_like(raw_pred)
            for catindex in self.category_indexes.values():
                softmax_pred[:, catindex] = torch.nn.functional.softmax(
                        raw_pred[:, catindex], dim=1)
            pred += softmax_pred
        return pred

    def expand_segment_quad(self, segs, num_seg_labels, segdiv='quad'):
        shape = segs.shape
        output = segs.repeat(1, 3, 1, 1)
        # For every connected component present (using generator)
        for i, mask in component_masks(segs):
            # Figure the bounding box of the label
            top, bottom = mask.any(dim=1).nonzero()[[0, -1], 0]
            left, right = mask.any(dim=0).nonzero()[[0, -1], 0]
            # Chop the bounding box into four parts
            vmid = (top + bottom + 1) // 2
            hmid = (left + right + 1) // 2
            # Construct top, bottom, right, left masks
            quad_mask = mask[None,:,:].repeat(4, 1, 1)
            quad_mask[0, vmid:, :] = 0   # top
            quad_mask[1, :, hmid:] = 0   # right
            quad_mask[2, :vmid, :] = 0   # bottom
            quad_mask[3, :, :hmid] = 0   # left
            quad_mask = quad_mask.long()
            # Modify extra segmentation labels by offsetting
            output[i,1,:,:] += quad_mask[0] * num_seg_labels
            output[i,2,:,:] += quad_mask[1] * (2 * num_seg_labels)
            output[i,1,:,:] += quad_mask[2] * (3 * num_seg_labels)
            output[i,2,:,:] += quad_mask[3] * (4 * num_seg_labels)
        return output

    def predict_single_class(self, tensor_images, classnum, downsample=1):
        '''
        Given a batch of images (RGB, normalized to [-1...1]) and
        a specific segmentation class number, returns a tuple with
           (1) a differentiable ([0..1]) prediction score for the class
               at every pixel of the input image.
           (2) a binary mask showing where in the input image the
               specified class is the best-predicted label for the pixel.
        Does not work on subdivided labels.
        '''
        seg, pred = self.raw_segment_batch(tensor_images,
                downsample=downsample)
        result = pred[:,self.channellist[classnum]].sum(dim=1)
        mask = (seg == classnum).max(1)[0]
        return result, mask

def component_masks(segmentation_batch):
    '''
    Splits connected components into regions (slower, requires cpu).
    '''
    npbatch = segmentation_batch.cpu().numpy()
    for i in range(segmentation_batch.shape[0]):
        labeled, num = skimage.morphology.label(npbatch[i][0], return_num=True)
        labeled = torch.from_numpy(labeled).to(segmentation_batch.device)
        for label in range(1, num):
            yield i, (labeled == label)

def load_unified_parsing_segmentation_model(segmodel_arch, segvocab, epoch):
    segmodel_dir = 'dataset/segmodel/%s-%s-%s' % ((segvocab,) + segmodel_arch)
    # Load json of class names and part/object structure
    with open(os.path.join(segmodel_dir, 'labels.json')) as f:
        labeldata = json.load(f)
    nr_classes={k: len(labeldata[k])
                for k in ['object', 'scene', 'material']}
    nr_classes['part'] = sum(len(p) for p in labeldata['object_part'].values())
    # Create a segmentation model
    segbuilder = upsegmodel.ModelBuilder()
    # example segmodel_arch = ('resnet101', 'upernet')
    seg_encoder = segbuilder.build_encoder(
            arch=segmodel_arch[0],
            fc_dim=2048,
            weights=os.path.join(segmodel_dir, 'encoder_epoch_%d.pth' % epoch))
    seg_decoder = segbuilder.build_decoder(
            arch=segmodel_arch[1],
            fc_dim=2048, use_softmax=True,
            nr_classes=nr_classes,
            weights=os.path.join(segmodel_dir, 'decoder_epoch_%d.pth' % epoch))
    segmodel = upsegmodel.SegmentationModule(
            seg_encoder, seg_decoder, labeldata)
    segmodel.categories = ['object', 'part', 'material']
    segmodel.eval()
    return segmodel

def load_segmentation_model(modeldir, segmodel_arch, segvocab, epoch=None):
    # Load csv of class names
    segmodel_dir = 'dataset/segmodel/%s-%s-%s' % ((segvocab,) + segmodel_arch)
    with open(os.path.join(segmodel_dir, 'labels.json')) as f:
        labeldata = EasyDict(json.load(f))
    # Automatically pick the last epoch available.
    if epoch is None:
        choices = [os.path.basename(n)[14:-4] for n in
                glob.glob(os.path.join(segmodel_dir, 'encoder_epoch_*.pth'))]
        epoch = max([int(c) for c in choices if c.isdigit()])
    # Create a segmentation model
    segbuilder = segmodel_module.ModelBuilder()
    # example segmodel_arch = ('resnet101', 'upernet')
    seg_encoder = segbuilder.build_encoder(
            arch=segmodel_arch[0],
            fc_dim=2048,
            weights=os.path.join(segmodel_dir, 'encoder_epoch_%d.pth' % epoch))
    seg_decoder = segbuilder.build_decoder(
            arch=segmodel_arch[1],
            fc_dim=2048, inference=True, num_class=len(labeldata.labels),
            weights=os.path.join(segmodel_dir, 'decoder_epoch_%d.pth' % epoch))
    segmodel = segmodel_module.SegmentationModule(seg_encoder, seg_decoder,
                                  torch.nn.NLLLoss(ignore_index=-1))
    segmodel.categories = [cat.name for cat in labeldata.categories]
    segmodel.labels = [label.name for label in labeldata.labels]
    categories = OrderedDict()
    label_category = numpy.zeros(len(segmodel.labels), dtype=int)
    for i, label in enumerate(labeldata.labels):
        label_category[i] = segmodel.categories.index(label.category)
    segmodel.meta = labeldata
    segmodel.eval()
    return segmodel

def ensure_upp_segmenter_downloaded(directory):
    baseurl = 'http://netdissect.csail.mit.edu/data/segmodel'
    dirname = 'upp-resnet50-upernet'
    files = ['decoder_epoch_40.pth', 'encoder_epoch_40.pth', 'labels.json']
    download_dir = os.path.join(directory, dirname)
    os.makedirs(download_dir, exist_ok=True)
    for fn in files:
        if os.path.isfile(os.path.join(download_dir, fn)):
            continue # Skip files already downloaded
        url = '%s/%s/%s' % (baseurl, dirname, fn)
        print('Downloading %s' % url)
        urlretrieve(url, os.path.join(download_dir, fn))
    assert os.path.isfile(os.path.join(directory, dirname, 'labels.json'))

def test_main():
    '''
    Test the unified segmenter.
    '''
    from PIL import Image
    testim = Image.open('script/testdata/test_church_242.jpg')
    tensor_im = (torch.from_numpy(numpy.asarray(testim)).permute(2, 0, 1)
            .float() / 255 * 2 - 1)[None, :, :, :].cuda()
    segmenter = UnifiedParsingSegmenter()
    seg = segmenter.segment_batch(tensor_im)
    bc = torch.bincount(seg.view(-1))
    labels, cats = segmenter.get_label_and_category_names()
    for label in bc.nonzero()[:,0]:
        if label.item():
            # What is the prediction for this class?
            pred, mask = segmenter.predict_single_class(tensor_im, label.item())
            assert mask.sum().item() == bc[label].item()
            assert len(((seg == label).max(1)[0] - mask).nonzero()) == 0
            inside_pred = pred[mask].mean().item()
            outside_pred = pred[~mask].mean().item()
            print('%s (%s, #%d): %d pixels, pred %.2g inside %.2g outside' %
                (labels[label.item()] + (label.item(), bc[label].item(),
                    inside_pred, outside_pred)))

if __name__ == '__main__':
    test_main()