File size: 43,644 Bytes
ba5dcdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
# Instantiate the segmenter gadget.
# Instantiate the GAN to optimize over
# Instrument the GAN for editing and optimization.
# Read quantile stats to learn 99.9th percentile for each unit,
# and also the 0.01th percentile.
# Read the median activation conditioned on door presence.

import os, sys, numpy, torch, argparse, skimage, json, shutil
from PIL import Image
from torch.utils.data import TensorDataset
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.gridspec as gridspec
from scipy.ndimage.morphology import binary_dilation

import netdissect.zdataset
import netdissect.nethook
from netdissect.dissection import safe_dir_name
from netdissect.progress import verbose_progress, default_progress
from netdissect.progress import print_progress, desc_progress, post_progress
from netdissect.easydict import EasyDict
from netdissect.workerpool import WorkerPool, WorkerBase
from netdissect.runningstats import RunningQuantile
from netdissect.pidfile import pidfile_taken
from netdissect.modelconfig import create_instrumented_model
from netdissect.autoeval import autoimport_eval

def main():
    parser = argparse.ArgumentParser(description='ACE optimization utility',
            prog='python -m netdissect.aceoptimize')
    parser.add_argument('--model', type=str, default=None,
                        help='constructor for the model to test')
    parser.add_argument('--pthfile', type=str, default=None,
                        help='filename of .pth file for the model')
    parser.add_argument('--segmenter', type=str, default=None,
                        help='constructor for asegmenter class')
    parser.add_argument('--classname', type=str, default=None,
                        help='intervention classname')
    parser.add_argument('--layer', type=str, default='layer4',
                        help='layer name')
    parser.add_argument('--search_size', type=int, default=10000,
                        help='size of search for finding training locations')
    parser.add_argument('--train_size', type=int, default=1000,
                        help='size of training set')
    parser.add_argument('--eval_size', type=int, default=200,
                        help='size of eval set')
    parser.add_argument('--inference_batch_size', type=int, default=10,
                        help='forward pass batch size')
    parser.add_argument('--train_batch_size', type=int, default=2,
                        help='backprop pass batch size')
    parser.add_argument('--train_update_freq', type=int, default=10,
                        help='number of batches for each training update')
    parser.add_argument('--train_epochs', type=int, default=10,
                        help='number of epochs of training')
    parser.add_argument('--l2_lambda', type=float, default=0.005,
                        help='l2 regularizer hyperparameter')
    parser.add_argument('--eval_only', action='store_true', default=False,
                        help='reruns eval only on trained snapshots')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA usage')
    parser.add_argument('--no-cache', action='store_true', default=False,
                        help='disables reading of cache')
    parser.add_argument('--outdir', type=str, default=None,
                        help='dissection directory')
    parser.add_argument('--variant', type=str, default=None,
                        help='experiment variant')
    args = parser.parse_args()
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    torch.backends.cudnn.benchmark = True

    run_command(args)

def run_command(args):
    verbose_progress(True)
    progress = default_progress()
    classname = args.classname # 'door'
    layer = args.layer # 'layer4'
    num_eval_units = 20

    assert os.path.isfile(os.path.join(args.outdir, 'dissect.json')), (
            "Should be a dissection directory")

    if args.variant is None:
        args.variant = 'ace'

    if args.l2_lambda != 0.005:
        args.variant = '%s_reg%g' % (args.variant, args.l2_lambda)

    cachedir = os.path.join(args.outdir, safe_dir_name(layer), args.variant,
            classname)

    if pidfile_taken(os.path.join(cachedir, 'lock.pid'), True):
        sys.exit(0)

    # Take defaults for model constructor etc from dissect.json settings.
    with open(os.path.join(args.outdir, 'dissect.json')) as f:
        dissection = EasyDict(json.load(f))
    if args.model is None:
        args.model = dissection.settings.model
    if args.pthfile is None:
        args.pthfile = dissection.settings.pthfile
    if args.segmenter is None:
        args.segmenter = dissection.settings.segmenter
    # Default segmenter class
    if args.segmenter is None:
        args.segmenter = ("netdissect.segmenter.UnifiedParsingSegmenter(" +
                "segsizes=[256], segdiv='quad')")

    if (not args.no_cache and
        os.path.isfile(os.path.join(cachedir, 'snapshots', 'epoch-%d.npy' % (
            args.train_epochs - 1))) and
        os.path.isfile(os.path.join(cachedir, 'report.json'))):
        print('%s already done' % cachedir)
        sys.exit(0)

    os.makedirs(cachedir, exist_ok=True)

    # Instantiate generator
    model = create_instrumented_model(args, gen=True, edit=True,
            layers=[args.layer])
    if model is None:
        print('No model specified')
        sys.exit(1)
    # Instantiate segmenter
    segmenter = autoimport_eval(args.segmenter)
    labelnames, catname = segmenter.get_label_and_category_names()
    classnum = [i for i, (n, c) in enumerate(labelnames) if n == classname][0]
    num_classes = len(labelnames)
    with open(os.path.join(cachedir, 'labelnames.json'), 'w') as f:
        json.dump(labelnames, f, indent=1)

    # Sample sets for training.
    full_sample = netdissect.zdataset.z_sample_for_model(model,
            args.search_size, seed=10)
    second_sample = netdissect.zdataset.z_sample_for_model(model,
            args.search_size, seed=11)
    # Load any cached data.
    cache_filename = os.path.join(cachedir, 'corpus.npz')
    corpus = EasyDict()
    try:
        if not args.no_cache:
            corpus = EasyDict({k: torch.from_numpy(v)
                for k, v in numpy.load(cache_filename).items()})
    except:
        pass

    # The steps for the computation.
    compute_present_locations(args, corpus, cache_filename,
            model, segmenter, classnum, full_sample)
    compute_mean_present_features(args, corpus, cache_filename, model)
    compute_feature_quantiles(args, corpus, cache_filename, model, full_sample)
    compute_candidate_locations(args, corpus, cache_filename, model, segmenter,
            classnum, second_sample)
    # visualize_training_locations(args, corpus, cachedir, model)
    init_ablation = initial_ablation(args, args.outdir)
    scores = train_ablation(args, corpus, cache_filename,
            model, segmenter, classnum, init_ablation)
    summarize_scores(args, corpus, cachedir, layer, classname,
            args.variant, scores)
    if args.variant == 'ace':
        add_ace_ranking_to_dissection(args.outdir, layer, classname, scores)
    # TODO: do some evaluation.

class SaveImageWorker(WorkerBase):
    def work(self, data, filename):
        Image.fromarray(data).save(filename, optimize=True, quality=80)

def plot_heatmap(output_filename, data, size=256):
    fig = Figure(figsize=(1, 1), dpi=size)
    canvas = FigureCanvas(fig)
    gs = gridspec.GridSpec(1, 1, left=0.0, right=1.0, bottom=0.0, top=1.0)
    ax = fig.add_subplot(gs[0])
    ax.set_axis_off()
    ax.imshow(data, cmap='hot', aspect='equal', interpolation='nearest',
              vmin=-1, vmax=1)
    canvas.print_figure(output_filename, format='png')


def draw_heatmap(output_filename, data, size=256):
    fig = Figure(figsize=(1, 1), dpi=size)
    canvas = FigureCanvas(fig)
    gs = gridspec.GridSpec(1, 1, left=0.0, right=1.0, bottom=0.0, top=1.0)
    ax = fig.add_subplot(gs[0])
    ax.set_axis_off()
    ax.imshow(data, cmap='hot', aspect='equal', interpolation='nearest',
              vmin=-1, vmax=1)
    canvas.draw()       # draw the canvas, cache the renderer
    image = numpy.fromstring(canvas.tostring_rgb(), dtype='uint8').reshape(
            (size, size, 3))
    return image

def compute_present_locations(args, corpus, cache_filename,
        model, segmenter, classnum, full_sample):
    # Phase 1.  Identify a set of locations where there are doorways.
    # Segment the image and find featuremap pixels that maximize the number
    # of doorway pixels under the featuremap pixel.
    if all(k in corpus for k in ['present_indices',
            'object_present_sample', 'object_present_location',
            'object_location_popularity', 'weighted_mean_present_feature']):
        return
    progress = default_progress()
    feature_shape = model.feature_shape[args.layer][2:]
    num_locations = numpy.prod(feature_shape).item()
    num_units = model.feature_shape[args.layer][1]
    with torch.no_grad():
        weighted_feature_sum = torch.zeros(num_units).cuda()
        object_presence_scores = []
        for [zbatch] in progress(
                torch.utils.data.DataLoader(TensorDataset(full_sample),
                batch_size=args.inference_batch_size, num_workers=10,
                pin_memory=True),
                desc="Object pool"):
            zbatch = zbatch.cuda()
            tensor_image = model(zbatch)
            segmented_image = segmenter.segment_batch(tensor_image,
                    downsample=2)
            mask = (segmented_image == classnum).max(1)[0]
            score = torch.nn.functional.adaptive_avg_pool2d(
                    mask.float(), feature_shape)
            object_presence_scores.append(score.cpu())
            feat = model.retained_layer(args.layer)
            weighted_feature_sum += (feat * score[:,None,:,:]).view(
                    feat.shape[0],feat.shape[1], -1).sum(2).sum(0)
        object_presence_at_feature = torch.cat(object_presence_scores)
        object_presence_at_image, object_location_in_image = (
                object_presence_at_feature.view(args.search_size, -1).max(1))
        best_presence_scores, best_presence_images = torch.sort(
                -object_presence_at_image)
        all_present_indices = torch.sort(
                best_presence_images[:(args.train_size+args.eval_size)])[0]
        corpus.present_indices = all_present_indices[:args.train_size]
        corpus.object_present_sample = full_sample[corpus.present_indices]
        corpus.object_present_location = object_location_in_image[
                corpus.present_indices]
        corpus.object_location_popularity = torch.bincount(
            corpus.object_present_location,
            minlength=num_locations)
        corpus.weighted_mean_present_feature = (weighted_feature_sum.cpu() / (
            1e-20 + object_presence_at_feature.view(-1).sum()))
        corpus.eval_present_indices = all_present_indices[-args.eval_size:]
        corpus.eval_present_sample = full_sample[corpus.eval_present_indices]
        corpus.eval_present_location = object_location_in_image[
                corpus.eval_present_indices]

    if cache_filename:
        numpy.savez(cache_filename, **corpus)

def compute_mean_present_features(args, corpus, cache_filename, model):
    # Phase 1.5.  Figure mean activations for every channel where there
    # is a doorway.
    if all(k in corpus for k in ['mean_present_feature']):
        return
    progress = default_progress()
    with torch.no_grad():
        total_present_feature = 0
        for [zbatch, featloc] in progress(
                torch.utils.data.DataLoader(TensorDataset(
                    corpus.object_present_sample,
                    corpus.object_present_location),
                batch_size=args.inference_batch_size, num_workers=10,
                pin_memory=True),
                desc="Mean activations"):
            zbatch = zbatch.cuda()
            featloc = featloc.cuda()
            tensor_image = model(zbatch)
            feat = model.retained_layer(args.layer)
            flatfeat = feat.view(feat.shape[0], feat.shape[1], -1)
            sum_feature_at_obj = flatfeat[
                    torch.arange(feat.shape[0]).to(feat.device), :, featloc
                    ].sum(0)
            total_present_feature = total_present_feature + sum_feature_at_obj
        corpus.mean_present_feature = (total_present_feature / len(
                corpus.object_present_sample)).cpu()
    if cache_filename:
        numpy.savez(cache_filename, **corpus)

def compute_feature_quantiles(args, corpus, cache_filename, model, full_sample):
    # Phase 1.6.  Figure the 99% and 99.9%ile of every feature.
    if all(k in corpus for k in ['feature_99', 'feature_999']):
        return
    progress = default_progress()
    with torch.no_grad():
        rq = RunningQuantile(resolution=10000) # 10x what's needed.
        for [zbatch] in progress(
                torch.utils.data.DataLoader(TensorDataset(full_sample),
                batch_size=args.inference_batch_size, num_workers=10,
                pin_memory=True),
                desc="Calculating 0.999 quantile"):
            zbatch = zbatch.cuda()
            tensor_image = model(zbatch)
            feat = model.retained_layer(args.layer)
            rq.add(feat.permute(0, 2, 3, 1
                ).contiguous().view(-1, feat.shape[1]))
        result = rq.quantiles([0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999])
        corpus.feature_001 = result[:, 0].cpu()
        corpus.feature_01 = result[:, 1].cpu()
        corpus.feature_10 = result[:, 2].cpu()
        corpus.feature_50 = result[:, 3].cpu()
        corpus.feature_90 = result[:, 4].cpu()
        corpus.feature_99 = result[:, 5].cpu()
        corpus.feature_999 = result[:, 6].cpu()
    numpy.savez(cache_filename, **corpus)

def compute_candidate_locations(args, corpus, cache_filename, model,
        segmenter, classnum, second_sample):
    # Phase 2.  Identify a set of candidate locations for doorways.
    # Place the median doorway activation in every location of an image
    # and identify where it can go that doorway pixels increase.
    if all(k in corpus for k in ['candidate_indices',
            'candidate_sample', 'candidate_score',
            'candidate_location', 'object_score_at_candidate',
            'candidate_location_popularity']):
        return
    progress = default_progress()
    feature_shape = model.feature_shape[args.layer][2:]
    num_locations = numpy.prod(feature_shape).item()
    with torch.no_grad():
        # Simplify - just treat all locations as possible
        possible_locations = numpy.arange(num_locations)

        # Speed up search for locations, by weighting probed locations
        # according to observed distribution.
        location_weights = (corpus.object_location_popularity).double()
        location_weights += (location_weights.mean()) / 10.0
        location_weights = location_weights / location_weights.sum()

        candidate_scores = []
        object_scores = []
        prng = numpy.random.RandomState(1)
        for [zbatch] in progress(
                torch.utils.data.DataLoader(TensorDataset(second_sample),
                batch_size=args.inference_batch_size, num_workers=10,
                pin_memory=True),
                desc="Candidate pool"):
            batch_scores = torch.zeros((len(zbatch),) + feature_shape).cuda()
            flat_batch_scores = batch_scores.view(len(zbatch), -1)
            zbatch = zbatch.cuda()
            tensor_image = model(zbatch)
            segmented_image = segmenter.segment_batch(tensor_image,
                    downsample=2)
            mask = (segmented_image == classnum).max(1)[0]
            object_score = torch.nn.functional.adaptive_avg_pool2d(
                    mask.float(), feature_shape)
            baseline_presence = mask.float().view(mask.shape[0], -1).sum(1)

            edit_mask = torch.zeros((1, 1) + feature_shape).cuda()
            if '_tcm' in args.variant:
                # variant: top-conditional-mean
                replace_vec = (corpus.mean_present_feature
                        [None,:,None,None].cuda())
            else: # default: weighted mean
                replace_vec = (corpus.weighted_mean_present_feature
                        [None,:,None,None].cuda())
            # Sample 10 random locations to examine.
            for loc in prng.choice(possible_locations, replace=False,
                    p=location_weights, size=5):
                edit_mask.zero_()
                edit_mask.view(-1)[loc] = 1
                model.edit_layer(args.layer,
                        ablation=edit_mask, replacement=replace_vec)
                tensor_image = model(zbatch)
                segmented_image = segmenter.segment_batch(tensor_image,
                    downsample=2)
                mask = (segmented_image == classnum).max(1)[0]
                modified_presence = mask.float().view(
                        mask.shape[0], -1).sum(1)
                flat_batch_scores[:,loc] = (
                        modified_presence - baseline_presence)
            candidate_scores.append(batch_scores.cpu())
            object_scores.append(object_score.cpu())

        object_scores = torch.cat(object_scores)
        candidate_scores = torch.cat(candidate_scores)
        # Eliminate candidates where the object is present.
        candidate_scores = candidate_scores * (object_scores == 0).float()
        candidate_score_at_image, candidate_location_in_image = (
                candidate_scores.view(args.search_size, -1).max(1))
        best_candidate_scores, best_candidate_images = torch.sort(
                -candidate_score_at_image)
        all_candidate_indices = torch.sort(
                best_candidate_images[:(args.train_size+args.eval_size)])[0]
        corpus.candidate_indices = all_candidate_indices[:args.train_size]
        corpus.candidate_sample = second_sample[corpus.candidate_indices]
        corpus.candidate_location = candidate_location_in_image[
                corpus.candidate_indices]
        corpus.candidate_score = candidate_score_at_image[
                corpus.candidate_indices]
        corpus.object_score_at_candidate = object_scores.view(
                len(object_scores), -1)[
                corpus.candidate_indices, corpus.candidate_location]
        corpus.candidate_location_popularity = torch.bincount(
            corpus.candidate_location,
            minlength=num_locations)
        corpus.eval_candidate_indices = all_candidate_indices[
                -args.eval_size:]
        corpus.eval_candidate_sample = second_sample[
                corpus.eval_candidate_indices]
        corpus.eval_candidate_location = candidate_location_in_image[
                corpus.eval_candidate_indices]
    numpy.savez(cache_filename, **corpus)

def visualize_training_locations(args, corpus, cachedir, model):
    # Phase 2.5 Create visualizations of the corpus images.
    progress = default_progress()
    feature_shape = model.feature_shape[args.layer][2:]
    num_locations = numpy.prod(feature_shape).item()
    with torch.no_grad():
        imagedir = os.path.join(cachedir, 'image')
        os.makedirs(imagedir, exist_ok=True)
        image_saver = WorkerPool(SaveImageWorker)
        for group, group_sample, group_location, group_indices in [
                ('present',
                    corpus.object_present_sample,
                    corpus.object_present_location,
                    corpus.present_indices),
                ('candidate',
                    corpus.candidate_sample,
                    corpus.candidate_location,
                    corpus.candidate_indices)]:
            for [zbatch, featloc, indices] in progress(
                    torch.utils.data.DataLoader(TensorDataset(
                        group_sample, group_location, group_indices),
                        batch_size=args.inference_batch_size, num_workers=10,
                        pin_memory=True),
                    desc="Visualize %s" % group):
                zbatch = zbatch.cuda()
                tensor_image = model(zbatch)
                feature_mask = torch.zeros((len(zbatch), 1) + feature_shape)
                feature_mask.view(len(zbatch), -1).scatter_(
                        1, featloc[:,None], 1)
                feature_mask = torch.nn.functional.adaptive_max_pool2d(
                        feature_mask.float(), tensor_image.shape[-2:]).cuda()
                yellow = torch.Tensor([1.0, 1.0, -1.0]
                        )[None, :, None, None].cuda()
                tensor_image = tensor_image * (1 - 0.5 * feature_mask) + (
                        0.5 * feature_mask * yellow)
                byte_image = (((tensor_image+1)/2)*255).clamp(0, 255).byte()
                numpy_image = byte_image.permute(0, 2, 3, 1).cpu().numpy()
                for i, index in enumerate(indices):
                    image_saver.add(numpy_image[i], os.path.join(imagedir,
                        '%s_%d.jpg' % (group, index)))
    image_saver.join()

def scale_summary(scale, lownums, highnums):
    value, order = (-(scale.detach())).cpu().sort(0)
    lowsum = ' '.join('%d: %.3g' % (o.item(), -v.item())
            for v, o in zip(value[:lownums], order[:lownums]))
    highsum = ' '.join('%d: %.3g' % (o.item(), -v.item())
            for v, o in zip(value[-highnums:], order[-highnums:]))
    return lowsum + ' ... ' + highsum

# Phase 3.  Given those two sets, now optimize a such that:
#   Door pred lost if we take 0 * a at a candidate (1)
#   Door pred gained If we take 99.9th activation * a at a candiate (1)
#

# ADE_au = E | on - E | off)
#       = cand-frac E_cand | on + nocand-frac E_cand | on
#        -  door-frac E_door | off + nodoor-frac E_nodoor | off
#       approx = cand-frac E_cand | on - door-frac E_door | off + K
# Each batch has both types, and minimizes
#     door-frac sum(s_c) when pixel off - cand-frac sum(s_c) when pixel on

def initial_ablation(args, dissectdir):
    # Load initialization from dissection, based on iou scores.
    with open(os.path.join(dissectdir, 'dissect.json')) as f:
        dissection = EasyDict(json.load(f))
    lrec = [l for l in dissection.layers if l.layer == args.layer][0]
    rrec = [r for r in lrec.rankings if r.name == '%s-iou' % args.classname
            ][0]
    init_scores = -torch.tensor(rrec.score)
    return init_scores / init_scores.max()

def ace_loss(segmenter, classnum, model, layer, high_replacement, ablation,
        pbatch, ploc, cbatch, cloc, run_backward=False,
        discrete_pixels=False,
        discrete_units=False,
        mixed_units=False,
        ablation_only=False,
        fullimage_measurement=False,
        fullimage_ablation=False,
        ):
    feature_shape = model.feature_shape[layer][2:]
    if discrete_units: # discretize ablation to the top N units
        assert discrete_units > 0
        d = torch.zeros_like(ablation)
        top_units = torch.topk(ablation.view(-1), discrete_units)[1]
        if mixed_units:
            d.view(-1)[top_units] = ablation.view(-1)[top_units]
        else:
            d.view(-1)[top_units] = 1
        ablation = d
    # First, ablate a sample of locations with positive presence
    # and see how much the presence is reduced.
    p_mask = torch.zeros((len(pbatch), 1) + feature_shape)
    if fullimage_ablation:
        p_mask[...] = 1
    else:
        p_mask.view(len(pbatch), -1).scatter_(1, ploc[:,None], 1)
    p_mask = p_mask.cuda()
    a_p_mask = (ablation * p_mask)
    model.edit_layer(layer, ablation=a_p_mask, replacement=None)
    tensor_images = model(pbatch.cuda())
    assert model._ablation[layer] is a_p_mask
    erase_effect, erased_mask = segmenter.predict_single_class(
            tensor_images, classnum, downsample=2)
    if discrete_pixels: # pixel loss: use mask instead of pred
        erase_effect = erased_mask.float()
    erase_downsampled = torch.nn.functional.adaptive_avg_pool2d(
            erase_effect[:,None,:,:], feature_shape)[:,0,:,:]
    if fullimage_measurement:
        erase_loss = erase_downsampled.sum()
    else:
        erase_at_loc = erase_downsampled.view(len(erase_downsampled), -1
                )[torch.arange(len(erase_downsampled)), ploc]
        erase_loss = erase_at_loc.sum()
    if run_backward:
        erase_loss.backward()
    if ablation_only:
        return erase_loss
    # Second, activate a sample of locations that are candidates for
    # insertion and see how much the presence is increased.
    c_mask = torch.zeros((len(cbatch), 1) + feature_shape)
    c_mask.view(len(cbatch), -1).scatter_(1, cloc[:,None], 1)
    c_mask = c_mask.cuda()
    a_c_mask = (ablation * c_mask)
    model.edit_layer(layer, ablation=a_c_mask, replacement=high_replacement)
    tensor_images = model(cbatch.cuda())
    assert model._ablation[layer] is a_c_mask
    add_effect, added_mask = segmenter.predict_single_class(
            tensor_images, classnum, downsample=2)
    if discrete_pixels: # pixel loss: use mask instead of pred
        add_effect = added_mask.float()
    add_effect = -add_effect
    add_downsampled = torch.nn.functional.adaptive_avg_pool2d(
            add_effect[:,None,:,:], feature_shape)[:,0,:,:]
    if fullimage_measurement:
        add_loss = add_downsampled.mean()
    else:
        add_at_loc = add_downsampled.view(len(add_downsampled), -1
                )[torch.arange(len(add_downsampled)), ploc]
        add_loss = add_at_loc.sum()
    if run_backward:
        add_loss.backward()
    return erase_loss + add_loss

def train_ablation(args, corpus, cachefile, model, segmenter, classnum,
        initial_ablation=None):
    progress = default_progress()
    cachedir = os.path.dirname(cachefile)
    snapdir = os.path.join(cachedir, 'snapshots')
    os.makedirs(snapdir, exist_ok=True)

    # high_replacement = corpus.feature_99[None,:,None,None].cuda()
    if '_h99' in args.variant:
        high_replacement = corpus.feature_99[None,:,None,None].cuda()
    elif '_tcm' in args.variant:
        # variant: top-conditional-mean
        high_replacement = (
                corpus.mean_present_feature[None,:,None,None].cuda())
    else: # default: weighted mean
        high_replacement = (
                corpus.weighted_mean_present_feature[None,:,None,None].cuda())
    fullimage_measurement = False
    ablation_only = False
    fullimage_ablation = False
    if '_fim' in args.variant:
        fullimage_measurement = True
    elif '_fia' in args.variant:
        fullimage_measurement = True
        ablation_only = True
        fullimage_ablation = True
    high_replacement.requires_grad = False
    for p in model.parameters():
        p.requires_grad = False

    ablation = torch.zeros(high_replacement.shape).cuda()
    if initial_ablation is not None:
        ablation.view(-1)[...] = initial_ablation
    ablation.requires_grad = True
    optimizer = torch.optim.Adam([ablation], lr=0.01)
    start_epoch = 0
    epoch = 0

    def eval_loss_and_reg():
        discrete_experiments = dict(
           # dpixel=dict(discrete_pixels=True),
           # dunits20=dict(discrete_units=20),
           # dumix20=dict(discrete_units=20, mixed_units=True),
           # dunits10=dict(discrete_units=10),
           # abonly=dict(ablation_only=True),
           # fimabl=dict(ablation_only=True,
           #             fullimage_ablation=True,
           #             fullimage_measurement=True),
           dboth20=dict(discrete_units=20, discrete_pixels=True),
           # dbothm20=dict(discrete_units=20, mixed_units=True,
           #              discrete_pixels=True),
           # abdisc20=dict(discrete_units=20, discrete_pixels=True,
           #             ablation_only=True),
           # abdiscm20=dict(discrete_units=20, mixed_units=True,
           #             discrete_pixels=True,
           #             ablation_only=True),
           # fimadp=dict(discrete_pixels=True,
           #             ablation_only=True,
           #             fullimage_ablation=True,
           #             fullimage_measurement=True),
           # fimadu10=dict(discrete_units=10,
           #             ablation_only=True,
           #             fullimage_ablation=True,
           #             fullimage_measurement=True),
           # fimadb10=dict(discrete_units=10, discrete_pixels=True,
           #             ablation_only=True,
           #             fullimage_ablation=True,
           #             fullimage_measurement=True),
           fimadbm10=dict(discrete_units=10, mixed_units=True,
                       discrete_pixels=True,
                       ablation_only=True,
                       fullimage_ablation=True,
                       fullimage_measurement=True),
           # fimadu20=dict(discrete_units=20,
           #             ablation_only=True,
           #             fullimage_ablation=True,
           #             fullimage_measurement=True),
           # fimadb20=dict(discrete_units=20, discrete_pixels=True,
           #             ablation_only=True,
           #             fullimage_ablation=True,
           #             fullimage_measurement=True),
           fimadbm20=dict(discrete_units=20, mixed_units=True,
                       discrete_pixels=True,
                       ablation_only=True,
                       fullimage_ablation=True,
                       fullimage_measurement=True)
           )
        with torch.no_grad():
            total_loss = 0
            discrete_losses = {k: 0 for k in discrete_experiments}
            for [pbatch, ploc, cbatch, cloc] in progress(
                    torch.utils.data.DataLoader(TensorDataset(
                        corpus.eval_present_sample,
                        corpus.eval_present_location,
                        corpus.eval_candidate_sample,
                        corpus.eval_candidate_location),
                    batch_size=args.inference_batch_size, num_workers=10,
                    shuffle=False, pin_memory=True),
                    desc="Eval"):
                # First, put in zeros for the selected units.
                # Loss is amount of remaining object.
                total_loss = total_loss + ace_loss(segmenter, classnum,
                        model, args.layer, high_replacement, ablation,
                        pbatch, ploc, cbatch, cloc, run_backward=False,
                        ablation_only=ablation_only,
                        fullimage_measurement=fullimage_measurement)
                for k, config in discrete_experiments.items():
                    discrete_losses[k] = discrete_losses[k] + ace_loss(
                        segmenter, classnum,
                        model, args.layer, high_replacement, ablation,
                        pbatch, ploc, cbatch, cloc, run_backward=False,
                        **config)
            avg_loss = (total_loss / args.eval_size).item()
            avg_d_losses = {k: (d / args.eval_size).item()
                    for k, d in discrete_losses.items()}
            regularizer = (args.l2_lambda * ablation.pow(2).sum())
            print_progress('Epoch %d Loss %g Regularizer %g' %
                    (epoch, avg_loss, regularizer))
            print_progress(' '.join('%s: %g' % (k, d)
                    for k, d in avg_d_losses.items()))
            print_progress(scale_summary(ablation.view(-1), 10, 3))
            return avg_loss, regularizer, avg_d_losses

    if args.eval_only:
        # For eval_only, just load each snapshot and re-run validation eval
        # pass on each one.
        for epoch in range(-1, args.train_epochs):
            snapfile = os.path.join(snapdir, 'epoch-%d.pth' % epoch)
            if not os.path.exists(snapfile):
                data = {}
                if epoch >= 0:
                    print('No epoch %d' % epoch)
                    continue
            else:
                data = torch.load(snapfile)
                with torch.no_grad():
                    ablation[...] = data['ablation'].to(ablation.device)
                    optimizer.load_state_dict(data['optimizer'])
            avg_loss, regularizer, new_extra = eval_loss_and_reg()
            # Keep old values, and update any new ones.
            extra = {k: v for k, v in data.items()
                    if k not in ['ablation', 'optimizer', 'avg_loss']}
            extra.update(new_extra)
            torch.save(dict(ablation=ablation, optimizer=optimizer.state_dict(),
                avg_loss=avg_loss, **extra),
                os.path.join(snapdir, 'epoch-%d.pth' % epoch))
        # Return loaded ablation.
        return ablation.view(-1).detach().cpu().numpy()

    if not args.no_cache:
        for start_epoch in reversed(range(args.train_epochs)):
            snapfile = os.path.join(snapdir, 'epoch-%d.pth' % start_epoch)
            if os.path.exists(snapfile):
                data = torch.load(snapfile)
                with torch.no_grad():
                    ablation[...] = data['ablation'].to(ablation.device)
                    optimizer.load_state_dict(data['optimizer'])
                start_epoch += 1
                break

    if start_epoch < args.train_epochs:
        epoch = start_epoch - 1
        avg_loss, regularizer, extra = eval_loss_and_reg()
        if epoch == -1:
            torch.save(dict(ablation=ablation, optimizer=optimizer.state_dict(),
                avg_loss=avg_loss, **extra),
                os.path.join(snapdir, 'epoch-%d.pth' % epoch))

    update_size = args.train_update_freq * args.train_batch_size
    for epoch in range(start_epoch, args.train_epochs):
        candidate_shuffle = torch.randperm(len(corpus.candidate_sample))
        train_loss = 0
        for batch_num, [pbatch, ploc, cbatch, cloc] in enumerate(progress(
                torch.utils.data.DataLoader(TensorDataset(
                    corpus.object_present_sample,
                    corpus.object_present_location,
                    corpus.candidate_sample[candidate_shuffle],
                    corpus.candidate_location[candidate_shuffle]),
                batch_size=args.train_batch_size, num_workers=10,
                shuffle=True, pin_memory=True),
                desc="ACE opt epoch %d" % epoch)):
            if batch_num % args.train_update_freq == 0:
                optimizer.zero_grad()
            # First, put in zeros for the selected units.  Loss is amount
            # of remaining object.
            loss = ace_loss(segmenter, classnum,
                    model, args.layer, high_replacement, ablation,
                    pbatch, ploc, cbatch, cloc, run_backward=True,
                    ablation_only=ablation_only,
                    fullimage_measurement=fullimage_measurement)
            with torch.no_grad():
                train_loss = train_loss + loss
            if (batch_num + 1) % args.train_update_freq == 0:
                # Third, add some L2 loss to encourage sparsity.
                regularizer = (args.l2_lambda * update_size
                        * ablation.pow(2).sum())
                regularizer.backward()
                optimizer.step()
                with torch.no_grad():
                    ablation.clamp_(0, 1)
                    post_progress(l=(train_loss/update_size).item(),
                            r=(regularizer/update_size).item())
                    train_loss = 0

        avg_loss, regularizer, extra = eval_loss_and_reg()
        torch.save(dict(ablation=ablation, optimizer=optimizer.state_dict(),
            avg_loss=avg_loss, **extra),
            os.path.join(snapdir, 'epoch-%d.pth' % epoch))
        numpy.save(os.path.join(snapdir, 'epoch-%d.npy' % epoch),
                ablation.detach().cpu().numpy())

    # The output of this phase is this set of scores.
    return ablation.view(-1).detach().cpu().numpy()


def tensor_to_numpy_image_batch(tensor_image):
    byte_image = (((tensor_image+1)/2)*255).clamp(0, 255).byte()
    numpy_image = byte_image.permute(0, 2, 3, 1).cpu().numpy()
    return numpy_image

# Phase 4: evaluation of intervention

def evaluate_ablation(args, model, segmenter, eval_sample, classnum, layer,
        ordering):
    total_bincount = 0
    data_size = 0
    progress = default_progress()
    for l in model.ablation:
        model.ablation[l] = None
    feature_units = model.feature_shape[args.layer][1]
    feature_shape = model.feature_shape[args.layer][2:]
    repeats = len(ordering)
    total_scores = torch.zeros(repeats + 1)
    for i, batch in enumerate(progress(torch.utils.data.DataLoader(
                TensorDataset(eval_sample),
                batch_size=args.inference_batch_size, num_workers=10,
                pin_memory=True),
                desc="Evaluate interventions")):
        tensor_image = model(zbatch)
        segmented_image = segmenter.segment_batch(tensor_image,
                    downsample=2)
        mask = (segmented_image == classnum).max(1)[0]
        downsampled_seg = torch.nn.functional.adaptive_avg_pool2d(
                mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
        total_scores[0] += downsampled_seg.sum().cpu()
        # Now we need to do an intervention for every location
        # that had a nonzero downsampled_seg, if any.
        interventions_needed = downsampled_seg.nonzero()
        location_count = len(interventions_needed)
        if location_count == 0:
            continue
        interventions_needed = interventions_needed.repeat(repeats, 1)
        inter_z = batch[0][interventions_needed[:,0]].to(device)
        inter_chan = torch.zeros(repeats, location_count, feature_units,
                device=device)
        for j, u in enumerate(ordering):
            inter_chan[j:, :, u] = 1
        inter_chan = inter_chan.view(len(inter_z), feature_units)
        inter_loc = interventions_needed[:,1:]
        scores = torch.zeros(len(inter_z))
        batch_size = len(batch[0])
        for j in range(0, len(inter_z), batch_size):
            ibz = inter_z[j:j+batch_size]
            ibl = inter_loc[j:j+batch_size].t()
            imask = torch.zeros((len(ibz),) + feature_shape, device=ibz.device)
            imask[(torch.arange(len(ibz)),) + tuple(ibl)] = 1
            ibc = inter_chan[j:j+batch_size]
            model.edit_layer(args.layer, ablation=(
                    imask.float()[:,None,:,:] * ibc[:,:,None,None]))
            _, seg, _, _, _ = (
                recovery.recover_im_seg_bc_and_features(
                    [ibz], model))
            mask = (seg == classnum).max(1)[0]
            downsampled_iseg = torch.nn.functional.adaptive_avg_pool2d(
                    mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
            scores[j:j+batch_size] = downsampled_iseg[
                    (torch.arange(len(ibz)),) + tuple(ibl)]
        scores = scores.view(repeats, location_count).sum(1)
        total_scores[1:] += scores
    return total_scores

def evaluate_interventions(args, model, segmenter, eval_sample,
        classnum, layer, units):
    total_bincount = 0
    data_size = 0
    progress = default_progress()
    for l in model.ablation:
        model.ablation[l] = None
    feature_units = model.feature_shape[args.layer][1]
    feature_shape = model.feature_shape[args.layer][2:]
    repeats = len(ordering)
    total_scores = torch.zeros(repeats + 1)
    for i, batch in enumerate(progress(torch.utils.data.DataLoader(
                TensorDataset(eval_sample),
                batch_size=args.inference_batch_size, num_workers=10,
                pin_memory=True),
                desc="Evaluate interventions")):
        tensor_image = model(zbatch)
        segmented_image = segmenter.segment_batch(tensor_image,
                    downsample=2)
        mask = (segmented_image == classnum).max(1)[0]
        downsampled_seg = torch.nn.functional.adaptive_avg_pool2d(
                mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
        total_scores[0] += downsampled_seg.sum().cpu()
        # Now we need to do an intervention for every location
        # that had a nonzero downsampled_seg, if any.
        interventions_needed = downsampled_seg.nonzero()
        location_count = len(interventions_needed)
        if location_count == 0:
            continue
        interventions_needed = interventions_needed.repeat(repeats, 1)
        inter_z = batch[0][interventions_needed[:,0]].to(device)
        inter_chan = torch.zeros(repeats, location_count, feature_units,
                device=device)
        for j, u in enumerate(ordering):
            inter_chan[j:, :, u] = 1
        inter_chan = inter_chan.view(len(inter_z), feature_units)
        inter_loc = interventions_needed[:,1:]
        scores = torch.zeros(len(inter_z))
        batch_size = len(batch[0])
        for j in range(0, len(inter_z), batch_size):
            ibz = inter_z[j:j+batch_size]
            ibl = inter_loc[j:j+batch_size].t()
            imask = torch.zeros((len(ibz),) + feature_shape, device=ibz.device)
            imask[(torch.arange(len(ibz)),) + tuple(ibl)] = 1
            ibc = inter_chan[j:j+batch_size]
            model.ablation[args.layer] = (
                    imask.float()[:,None,:,:] * ibc[:,:,None,None])
            _, seg, _, _, _ = (
                recovery.recover_im_seg_bc_and_features(
                    [ibz], model))
            mask = (seg == classnum).max(1)[0]
            downsampled_iseg = torch.nn.functional.adaptive_avg_pool2d(
                    mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
            scores[j:j+batch_size] = downsampled_iseg[
                    (torch.arange(len(ibz)),) + tuple(ibl)]
        scores = scores.view(repeats, location_count).sum(1)
        total_scores[1:] += scores
    return total_scores


def add_ace_ranking_to_dissection(outdir, layer, classname, total_scores):
    source_filename = os.path.join(outdir, 'dissect.json')
    source_filename_bak = os.path.join(outdir, 'dissect.json.bak')

    # Back up the dissection (if not already backed up) before modifying
    if not os.path.exists(source_filename_bak):
        shutil.copy(source_filename, source_filename_bak)

    with open(source_filename) as f:
        dissection = EasyDict(json.load(f))

    ranking_name = '%s-ace' % classname

    # Remove any old ace ranking with the same name
    lrec = [l for l in dissection.layers if l.layer == layer][0]
    lrec.rankings = [r for r in lrec.rankings if r.name != ranking_name]

    # Now convert ace scores to rankings
    new_rankings = [dict(
        name=ranking_name,
        score=(-total_scores).flatten().tolist(),
        metric='ace')]

    # Prepend to list.
    lrec.rankings[2:2] = new_rankings

    # Replace the old dissect.json in-place
    with open(source_filename, 'w') as f:
        json.dump(dissection, f, indent=1)

def summarize_scores(args, corpus, cachedir, layer, classname, variant, scores):
    target_filename = os.path.join(cachedir, 'summary.json')

    ranking_name = '%s-%s' % (classname, variant)
    # Now convert ace scores to rankings
    new_rankings = [dict(
        name=ranking_name,
        score=(-scores).flatten().tolist(),
        metric=variant)]
    result = dict(layers=[dict(layer=layer, rankings=new_rankings)])

    # Replace the old dissect.json in-place
    with open(target_filename, 'w') as f:
        json.dump(result, f, indent=1)

if __name__ == '__main__':
    main()