import tensorflow from tensorflow import keras import gradio as gr model = keras.models.load_model('simple_model.h5') potato_classes = ['Early_Blight','Healthy','Late_Blight'] def predict_input_image(img): img_3d=img.reshape(-1,256,256,3) prediction=model.predict(img_3d)[0] return {potato_classes[i]: float(prediction[i]) for i in range(3)} image = gr.inputs.Image(shape=(256,256)) label = gr.outputs.Label(num_top_classes=3) gr.Interface(fn=predict_input_image, inputs=image, outputs=label,interpretation='default').launch()